Package ‘Morpho’
September 25, 2014

Type Package

Title Calculations and visualisations related to Geometric Morphometrics
Version 2.1

Date 2014-09-25

Author Stefan Schlager

Maintainer Stefan Schlager <stefan.schlager@uniklinik-freiburg.de>

Description A toolset for Geometric Morphometrics and mesh processing. This
includes (among other stuff) mesh deformations based on reference points,permutation tests, de-
tection of outliers, processing of sliding
semi-landmarks and semi-automated surface landmark placement.

Suggests car, lattice, MASS, shapes
Depends R (>=3.0.2)

Imports Rvcg (>=0.7), rgl (>=0.93.963), colorRamps, foreach (>=
1.4.0), Matrix (>= 1.0-1), parallel, yalmpute, doParallel (>= 1.0.6), Rcpp

LinkingTo Rcpp, ReppArmadillo (>=0.4)
Copyright see COPYRIGHTS file for details
License GPL-2

LazyLoad yes

URL http://sourceforge.net/projects/morpho-rpackage/,https:
//github.com/zarquon42b/Morpho

NeedsCompilation yes
Repository CRAN

Date/Publication 2014-09-25 17:31:55

http://sourceforge.net/projects/morpho-rpackage/
https://github.com/zarquon42b/Morpho
https://github.com/zarquon42b/Morpho

2 R topics documented:

R topics documented:

Morpho-package 4
angle.calc 5
ANONYMUZE o v v vt bt i e e e e e e e e e e e 5
applyTransform 6
arrtMean3 L e e 7
asymPermute L. L e e e 8
barycenter 9
bindAIr L e e 9
boneData L 10
CAC . . e 11
CEXtract 12
checkLM e 13
classify L 14
closemeshKD 15
COlOTS e 17
computeTransform e 17
conv2backf 18
covDist e 19
COVW L e 21
create Atlas L. L e e 22
Createl e 23
CIOSSP « « « o e e e e e e e e e e e e e 24
CSIZE . . . o e 25
cutMeshPlane 26
CULSPACE .« . v v o v e i e e e e e e e e e e e 26
CVA e 27
deformGrid3d L 31
exVar e e 32
file2mesh 33
findooutliers 34
AXLMmMIrTor o oo e e e 35
AXLMIPS e 36
getFaces L L e 38
getTrafodx4 38
getTrafoRotaxis 39
groupPCA e e 40
histGroup L e e e 42
ICpmat 43
kendalldist 44
lineplot L e 44
MENNIndex o e 45
meanMat L e 46
mergeMeshes e 47
mesh2grey 48
mesh20b]o 49

meshcube e 50

R topics documented: 3

meshDist.matriX e e e e e e e e e e 51
meshPlanelntersect 53
meshres e e e 54
0011 (o) o 55
name2factor L. L e e e e e e 56
NNshapeReg e 57
NOSE . & v v v e e e e e e e e e e e e e e e e e 58
PCALign e e e e e 58
peaplot3d 59
PCdist e 60
permudist e 61
PEIMUVEC o v ot e e e e e e e e e e e e e e e e e e 62
placePatch 64
plotAtlas 66
plotNormals e e e 67
PIS2B . e 68
predictShapedm 70
proc.weight L e e e e e e 71
ProcAOVSYM L e e e 73
ProcGPA e 74
PIOCSYM o o o e 75
projRead e e 78
QamMat e e 80
quad2trimesh 81
I2MOIPhOJ . . o o o o e e e e e e e e 81
ray2mesh e 82
read.csvfolder L 83
readdmdta 84
read PP o e e e e e e e e e 85
read.PtS L e 85
readallTPS e 86
readLandmarks.csSv L L 87
regdist e 88
RegScore &9
relaxLM e 90
relWarps e e e e 91
render.matrixDist e e 93
retroDeform3d 94
retroDeformMesh L 95
rotaxis3d e e e 96
rotaxiSMat e 97
rotmesh.onto L. 98
TOLONMAL o v v e 99
(0] 10) 111 2 100
scalemesh 102
showPC e e e 103
slider3d L 104

solutionSpace 107

4 Morpho-package
PS3d . . L e e 108
LYPPIOD . o o o e e e e e 109
unrefVertex e e e 111
updateNormals L 112
VECX & v v e 113
warp.mesh e e 114
warpmovie3dd L e e e e 116
WIE.PES .« . o o o o e e e e e e e 118
Index 119
Morpho-package A toolbox providing methods for data-acquisitiopn, visualisation and
statistical methods related to Geometric Morphometrics and shape
analysis
Description
A toolbox for Morphometric calculations. Including sliding operations for Semilandmarks, import-
ing, exporting and manipulating of 3D-surface meshes and semi-automated placement of surface
landmarks.
Details
Package: Morpho
Type: Package
Version: 2.1
Date: 2014-09-25
License: GPL
LazyLoad: yes
Note
The pdf-version of Morpho-help can be obtained from CRAN on http://cran.r-project.org/
web/packages/Morpho/Morpho. pdf
For more advanced operations on triangular surface meshes, check out my package Rvcg: http://
cran.r-project.org/web/packages/Rvcg/ or the code repository on github https://github.
com/zarquon42b/Rvcg
Author(s)

Stefan Schlager <stefan.schlager@uniklinik-freiburg.de>

Maintainer: Stefan Schlager <stefan.schlager@uniklinik-freiburg.de>

http://cran.r-project.org/web/packages/Morpho/Morpho.pdf
http://cran.r-project.org/web/packages/Morpho/Morpho.pdf
http://cran.r-project.org/web/packages/Rvcg/
http://cran.r-project.org/web/packages/Rvcg/
https://github.com/zarquon42b/Rvcg
https://github.com/zarquon42b/Rvcg

angle.calc 5

References

Schlager S. 2013. Soft-tissue reconstruction of the human nose: population differences and sexual
dimorphism. PhD thesis, Universitétsbibliothek Freiburg. URL: http://www. freidok.uni-freiburg.
de/volltexte/9181/.

angle.calc calculate angle between two vectors

Description

calculates unsigned angle between two vectors

Usage
angle.calc(x, y)

Arguments

X numeric vector (or matrix to be interpreted as vector)

y numeric vector (or matrix to be interpreted as vector) of same length as x
Value

angle between x and y in radians.

Examples

#calculate angle between two centered and
superimposed landmark configuration
data(boneData)

opa <- rotonto(bonelLM[,,1]1,bonelLM[,,21)
angle.calc(opa$X, opas$y)

anonymize Replace ID-strings of data and associated files.

Description

Replace ID-strings with for digits - e.g. for blind observer error testing.

Usage

anonymize(data, remove, path = NULL, dest.path = NULL, ext = ".ply",
split = "_", levels = TRUE, prefix = NULL, suffix = NULL,
sample = TRUE)

http://www.freidok.uni-freiburg.de/volltexte/9181/
http://www.freidok.uni-freiburg.de/volltexte/9181/

6 applyTransform
Arguments
data Named array, matrix or vector containing data.
remove integer: which entry (separated by split) of the name is to be removed
path Path of associated files to be copied to renamed versions.
dest.path where to put renamed files.
ext file extension of files to be renamed.
split character: by which to split specimen-ID
levels logical: if a removed entry is to be treated as a factor. E.g. if one specimen has
a double entry, the anonymized versions will be named accordingly.
prefix character: prefix before the alias string.
suffix character: suffix after the alias ID-string.
sample logical: whether to randomize alias ID-string.
Value
data data with names replaced
anonymkey map of original name and replaced name
Examples
anonymize(iris,remove=1)
applyTransform apply affine transformation to data
Description
apply affine transformation to data
Usage
applyTransform(x, trafo, inverse)
S3 method for class 'matrix’
applyTransform(x, trafo, inverse = FALSE)
S3 method for class 'mesh3d’
applyTransform(x, trafo, inverse = FALSE)
Arguments
X matrix or mesh3d
trafo 4x4 transformation matrix (for mesh3d the matrix will be transformed to a 4x4
matrix)
inverse logical: if TRUE, the inverse of the transformation is applied

arrMean3 7

Value

the transformed object

Examples

data(boneData)

rot <- rotonto(bonelM[,,1],bonelLM[,,2])

trafo <- getTrafo4x4(rot)

boneLM2trafo <- applyTransform(bonelLM[,,2],trafo)

arrMean3 calculate mean of an array

Description

calculate mean of a 3D-array (e.g. containing landmarks) (fast) using the Armadillo C++ Backend

Usage

arrMean3(arr)

Arguments

arr k x m x ndimensional numeric array

Value

matrix of dimensions k x m.

Note

this is the same as apply(arr, 1:2, mean), only faster for large configurations.

Examples

data(boneData)
proc <- ProcGPA(bonelLM, silent = TRUE)
mshape <- arrMean3(proc$rotated)

asymPermute

asymPermute

Assess differences in amount and direction of asymmetric variation

Description

Assess differences in amount and direction of asymmetric variation

Usage

asymPermute(x, groups, rounds = 1000, which = NULL)

Arguments

X
groups
rounds

which

Value
dist
angle
means

p.dist

p.angle
permudist
permuangle
groupmeans

levels

Note

object of class symproc result from calling procSym with pairedLM specified
factors determining grouping.
number of permutations

select which factorlevels to use, if NULL, all pairwise differences will be as-
sessed after shuffling pooled data.

difference between vector lengths of group means
angle (in radians) between vectors of group specific asymmetric deviation
actual group averages

p-value obtained by comparing the actual distance to randomly acquired dis-
tances

p-value obtained by comparing the actual angle to randomly acquired angles
vector containing differences between random group means’ vector lenghts
vector containing angles between random group means’ vectors

array with asymmetric displacement per group

character vector containing the factors used

This test is only sensible if between-group differences concerning directional asymmetry have been
established (e.g. by applying a MANOVA on the "asymmetric" PCscores (see also procSym) and
one wants to test whether these can be attributed to differences in amount and/or direction of asym-
metric displacement. If there is no or only very little directional asymmetry present, the angles will
only be significan when larger than 90 degrees (pi/2). So careful interpretation is advised.

See Also

procSym

barycenter

barycenter calculates the barycenters for all faces of a triangular mesh

Description

calculates the barycenters for all faces of a triangular mesh

Usage

barycenter(mesh)
Arguments

mesh triangular mesh of class 'mesh3d’
Value

k x 3 matrix of barycenters for all k faces of input mesh.

See Also

closemeshKD

Examples

require(rgl)

data(nose)

bary <- barycenter(shortnose.mesh)

Not run:

##visualize mesh

wire3d(shortnose.mesh)

visualize barycenters

points3d(bary, col=2)

now each triangle is equipped with a point in its barycenter

End(Not run)

bindArr concatenate multiple arrays/matrices

Description

concatenate multiple 3-dimensional arrays and/or 2-dimensional matrices to one big array

Usage
bindArr(..., along = 1)

10 boneData

Arguments
along dimension along which to concatenate.
matrices and/or arrays with appropriate dimensionality to combine to one array,
or a single list containing suitable matrices, or arrays).
Details

non

dimnames, if present and if differing between entries, will be concatenated, separated by a

Value

returns array of combined matrices/arrays

See Also

cbind, rbind, array

Examples

A <- matrix(rnorm(18),6,3)
B <- matrix(rnorm(18),6,3)
C <- matrix(rnorm(18),6,3)

#combine to 3D-array

newArr <- bindArr(A,B,C,along=3)
#combine along first dimension

newArr2 <- bindArr(newArr,newArr,along=1)

boneData Landmarks and a triangular mesh

Description

Landmarks on the osseous human nose and a triangular mesh representing this structure.

Format

boneLM: A 10x3x80 array containing 80 sets of 3D-landmarks placed on the human osseous nose.

skull_0144_ch_fe.mesh: The mesh representing the area of the first individual of bonelLM

CAC

11

CAC

calculate common allometric component

Description

calculate common allometric component

Usage

CAC(x, size, groups = NULL, log = FALSE)

Arguments

X
size
groups

log

Value

CACscores
CAC

X

sc
RSCscores
RSC
gmeans

CS

References

datamatrix (e.g. with PC-scores) or 3D-array with landmark coordinates
vector with Centroid sizes
grouping variable

logical: use log(size)

common allometric component scores

common allometric component

(group-) centered data

CAC reprojected into original space by applying CAC %*% x
residual shape component scores

residual shape components

groupmeans

the centroid sizes (log transformed if log = TRUE)

Mitteroecker P, Gunz P, Bernhard M, Schaefer K, Bookstein FL. 2004. Comparison of cranial
ontogenetic trajectories among great apes and humans. Journal of Human Evolution 46(6):679-97.

Examples

data(boneData)

proc <- procSym(bonelLM)

pop.sex <- name2factor(bonelLM,which=3:4)

cac <- CAC(proc$rotated,proc$size,pop.sex)
plot(cac$CACscores,cac$size)#plot scores against Centroid size
cor.test(cac$CACscores,cac$size)#check for correlation

#visualize differences between large and small on the sample's consensus

Not run:

large <- showPC(max(cac$CACscores),cac$CAC,proc$mshape)

12 cExtract

small <- showPC(min(cac$CACscores),cac$CAC,proc$mshape)
deformGrid3d(small,large,ngrid=0)

End(Not run)

cExtract extract information about fixed landmarks, curves and patches from
and atlas generated by "landmark”

Description

After exporting the pts file of the atlas from "landmark" and importing it into R via "read.pts"
cExtract gets information which rows of the landmark datasets belong to curves or patches.

Usage

cExtract(pts.file)

Arguments
pts.file either a character naming the path to a pts.file or the name of an object imported
via read.pts.
Value

returns a list containing the vectors with the indices of matrix rows belonging to the in "landmark"
defined curves, patches and fix landmarks and a matrix containing landmark coordinates.

Author(s)

Stefan Schlager

See Also

read.lmdta ,read.pts

checkLM

13

checkLM

Visually browse through a sample rendering its landmarks and corre-
sponding surfaces.

Description

Browse through a sample rendering its landmarks and corresponding surfaces. This is handy e.g. to
check if the landmark projection using placePatch was successful, and to mark specific specimen.

Usage

checkLM(dat.array, path = NULL, prefix = "", suffix = ".ply",

col = "white"”, pt.size = NULL, alpha

0.7, begin =1,

render = c("w", "s"), point = c("s", "p"), add = FALSE, Rdata = FALSE,

atlas =

Arguments

dat.array

path

prefix

suffix

col

pt.size

alpha

begin
render
point
add
Rdata

atlas

text.1lm

NULL, text.lm = FALSE)

array or list containing landmark coordinates.

optional character: path to files where surface meshes are stored locally. If not
specified only landmarks are displayed.

prefix to attach to the filenames extracted from dimnames(dat.array)[[3]]
(in case of an array), or names(dat.array) (in case of a list)

suffix to attach to the filenames extracted from dimnames(dat.array)[[31] (in
case of an array), or names(dat.array) (in case of a list)

mesh color

size of plotted points/spheres. If point="s". pt.size defines the radius of the

n.n

spheres. If point="p" it sets the variable size used in point3d.

value between 0 and 1. Sets transparency of mesh 1=opaque 0= fully transpar-
ent.

integer: select a specimen to start with.

if render="w", a wireframe will be drawn, else the meshes will be shaded.
how to render landmarks. "s"=spheres, "p"=points.

logical: add to existing rgl window.

logical: if the meshes are previously stored as Rdata-files by calling save(), these
are simply loaded and rendered. Otherwise it is assumed that the meshes are
stored in standard file formats such as PLY, STL or OBJ, that are then imported
with the function file2mesh.

provide object generated by createAtlas to specify coloring of surface patches,
curves and landmarks

logical: number landmarks. Only applicable when atlas=NULL.

14 classity

Value

returns an invisible vector of indices of marked specimen.

Note

if Rdata=FALSE, the additional command line tools need to be installed (http://sourceforge.
net/projects/morpho-rpackage/files/Auxiliaries/)

See Also

placePatch, createAtlas, plotAtlas,file2mesh

Examples

data(nose)

#i##create mesh for longnose

longnose.mesh <- warp.mesh(shortnose.mesh, shortnose.1lm,longnose.1lm)
write meshes to disk

save(shortnose.mesh, file="shortnose")

save(longnose.mesh, file="longnose")

create landmark array

data <- bindArr(shortnose.lm, longnose.lm, along=3)
dimnames(data)[[3]] <- c("shortnose”, "longnose")
Not run:

checkLM(data, path="./",Rdata=TRUE, suffix="")

End(Not run)

now visualize by using an atlas:

atlas <- createAtlas(shortnose.mesh, landmarks =
shortnose.1lm[c(1:5,20:21),1,

patch=shortnose.1lm[-c(1:5,20:21),1)

Not run:

checkLM(data, path="./",Rdata=TRUE, suffix="", atlas=atlas)

End(Not run)

classify classify specimen based on between-group PCA or CVA

Description

classify specimen based on between-group PCA or CVA

http://sourceforge.net/projects/morpho-rpackage/files/Auxiliaries/
http://sourceforge.net/projects/morpho-rpackage/files/Auxiliaries/

closemeshKD 15
Usage
classify(x, cv = TRUE)

S3 method for class 'bgPCA'
classify(x, cv = TRUE)

S3 method for class 'CVA'
classify(x, cv = T)

Arguments

X result of groupPCA or CVA

cv logical: use cross-validated scores if available
Value

class classification result

groups original grouping variable

for object of CVA, also the posterior probabilities are returned.

closemeshkD Project coordinates onto a target triangular surface mesh.

Description

For a set of 3D-coordinates the closest matches on a target surface are determined and normals at
as well as distances to that point are calculated.

Usage
closemeshKD(x, mesh, k = 50, sign = FALSE, barycoords = FALSE,
cores = 1, method = 0, ...)
Arguments
X k x 3 matrix containing 3D-coordinates or object of class mesh3d.
mesh triangular surface mesh stored as object of class mesh3d.
k neighbourhood of kd-tree to search - the larger, the slower - but the more likely
the absolutely closest point is hit.
sign logical: if TRUE, signed distances are returned.
barycoords logical: if TRUE, barycentric coordinates of the hit points are returned.
cores integer: how many cores to use for the search algorithm.
method integer: either O or 1, if O ordinary Euclidean distance is used, if 1, the distance

suggested by Moshfeghi(1994) is calculated.

additional arguments. currently unavailable.

16 closemeshKD

Details

The search for the clostest point is designed as follows: Calculate the barycenter of each target
face. For each coordinate of x, determine the k closest barycenters and calculate the distances to
the closest point on these faces.

Value

returns an object of class mesh3d. with:

vb 4xn matrix containing n vertices as homolougous coordinates
normals 4xn matrix containing vertex normals
quality vector: containing distances to target. In case of method=1, this is not the Eu-

clidean distance but the distance of the reference point to the faceplane (orthog-
onally projected) plus the distance to the closest point on one of the face’s edges
(the target point). See the literature cited below for details.

it 4xm matrix containing vertex indices forming triangular faces.Only available,
when x is a mesh

Author(s)

Stefan Schlager

References

Baerentzen, Jakob Andreas. & Aanaes, H., 2002. Generating Signed Distance Fields From Triangle
Meshes. Informatics and Mathematical Modelling.

Moshfeghi M, Ranganath S, Nawyn K. 1994. Three-dimensional elastic matching of volumes IEEE
Transactions on Image Processing: A Publication of the IEEE Signal Processing Society 3:128-138.

See Also

ply2mesh

Examples

require(rgl)

data(nose)

out <- closemeshKD(longnose.lm,shortnose.mesh,sign=TRUE)
show distances - they are very small because
#i##longnose.1lm is scaled to unit centroid size.
hist(out$quality)

colors 17

colors predefined colors for bone and skin

Description

predefined colors for bone and skin

Details

available colors are:
bonel

bone2

bone3

skinl

skin2

skin3

skin4

computeTransform calculate an affine transformation matrix

Description

calculate an affine transformation matrix

Usage

computeTransform(x, y, type = c("affine”, "rigid", "similarity"”),
reflection = FALSE)

Arguments
X fix landmarks
y moving landmarks
type set type of affine transformation: options are "affine", "rigid" and "similarity"
(rigid + scale)
reflection logical: if TRUE "rigid" and "similarity" allow reflections.
Value

returns a 4x4 (3x3 in 2D case) transformation matrix

18 conv2backf

Examples

data(boneData)
trafo <- computeTransform(bonelM[,,1],bonelLM[,,2])
transLM <- applyTransform(bonelLM[, ,2],trafo)

conv2backf invert faces’ orientation of triangular mesh

Description

inverts faces’ orientation of triangular mesh and recomputes vertex normals

Usage

conv2backf (mesh)
Arguments

mesh triangular mesh of class mesh3d
Value

returns resulting mesh

Author(s)

Stefan Schlager

See Also

updateNormals

Examples

require(rgl)

data(nose)

Not run:
shade3d(shortnose.mesh,col=3)

End(Not run)

noseinvert <- conv2backf(shortnose.mesh)
show normals

Not run:
plotNormals(noseinvert,long=0.01)

End(Not run)

covDist

19

covDist

calculates distances and PC-coordinates of covariance matrices

Description

calculates PC-coordinates of covariance matrices by using the Riemannian metric in their respective

space.

Usage

covDist(s1, s2)

covPCA(data, groups, rounds = 1000, bootrounds = @, lower.bound = 9.05,

upper.bound =

Arguments

sl

s2
data
groups

rounds

bootrounds

lower.bound

upper .bound

Details

0.95)

m X m covariance matrix

m X m covariance matrix

matrix containing data with one row per observation
factor: group assignment for each specimen

integer: rounds to run permutation of distances by randomly assigning group
membership

integer: perform bootstrapping to generate confidence intervals (lower bound-
ary, median and upper boundary) for PC-scores.

numeric: set probability (quantile) for lower boundary estimate from bootstrap-
ping.

numeric: set probability (quantile) for upper boundary estimate from bootstrap-
ping.

covDist calculates the Distance between covariance matrices while covPCA uses a MDS (multidi-
mensional scaling) approach to obtain PC-coordinates from a distance matrix derived from multiple
groups. P-values for pairwise distances can be computed by permuting group membership and com-
paring actual distances to those obtained from random resampling. To calculate confidence intervals
for PC-scores, within-group bootstrapping can be performed.

Value

covDist returns the distance between s1 and s2

covPCA returns a list containing:

if scores = TRUE

PCscores

PCscores

20 covDist

eigen eigen decomposition of the centered inner product
if rounds > @

dist distance matrix

p.matrix p-values for pairwise distances from permutation testing

if bootrounds > 0

bootstrap list containing the lower and upper bound of the confidence intervals of PC-
scores as well as the median of bootstrapped values.
boot.data array containing all results generated from bootstrapping.
Author(s)
Stefan Schlager
References

Mitteroecker P, Bookstein F. 2009. The ontogenetic trajectory of the phenotypic covariance matrix,
with examples from craniofacial shape in rats and humans. Evolution 63:727-737.

Hastie T, Tibshirani R, Friedman JJH. 2013. The elements of statistical learning. Springer New
York.

See Also

prcomp

Examples

cpca <- covPCA(iris[,1:4],iris[,51)

cpcas$p.matrix #show pairwise p-values for equal covariance matrices

Not run:

require(car)

sp(cpca$PCscores[,1],cpca$PCscores[,2],groups=levels(iris[,5]),
smooth=FALSE, xlim=range(cpca$PCscores),ylim=range(cpca$PCscores))

data(boneData)

proc <- procSym(bonelLM)

pop <- name2factor(bonelLM, which=3)

compare covariance matrices for PCscores of Procrustes fitted data
cpcal <- covPCA(proc$PCscores, groups=pop, rounds = 1000)

view p-values:

cpcal$p.matrix # differences between covariance matrices

are significant

visualize covariance ellipses of first 5 PCs of shape
spm(proc$PCscores[,1:5], groups=pop, smooth=FALSE,ellipse=TRUE, by.groups=TRUE)
covariance seems to differ between 1st and 5th PC

for demonstration purposes, try only first 4 PCs

cpca2 <- covPCA(proc$PCscores[,1:4], groups=pop, rounds = 1000)

view p-values:

cpca2$p.matrix # significance is gone

covW

End(Not run)

#do some bootstrapping 1000 rounds

cpca <- covPCA(iris[,1:4],iris[,5],rounds=0, bootrounds=1000)

#plot bootstrapped data of PC1 and PC2 for first group

plot(t(cpcas$boot.datal1,1:2,]),xlim=range(cpcas$boot.datal,1,]),
ylim=range(cpcasboot.datal,2,]1))

points(t(cpca$PCscores[1,]),col="white"”, pch=8,cex=1.5)##plot actual values

for (i in 2:3) {
points(t(cpca$boot.datali,1:2,]),col=1i)##plot other groups
points(t(cpca$PCscores[i,]),col=1,pch=8,cex=1.5)##plot actual values
}

21

covW calculate the pooled within groups covariance matrix

Description

calculate the pooled within groups covariance matrix

Usage

covW(data, groups)

Arguments
data a matrix containing data
groups grouping variables
Value

Returns the pooled within group covariance matrix

Author(s)

Stefan Schlager

See Also

cov, typprobClass

Examples

data(iris)
poolCov <- covW(iris[,1:4],iris[,5])

22 createAtlas

createAtlas Create an atlas needed in placePatch

Description

Create an atlas needed in placePatch

Usage

createAtlas(mesh, landmarks, patch, corrCurves = NULL, patchCurves = NULL,
keep.fix = NULL)

Arguments
mesh triangular mesh representing the atlas’ surface
landmarks matrix containing landmarks defined on the atlas, as well as on each specimen
in the corresponding sample.
patch matrix containing semi-landmarks to be projected onto each specimen in the
corresponding sample.
corrCurves a vector or a list containing vectors specifiyng the rowindices of landmarks to
be curves that are defined on the atlas AND each specimen. e.g. if landmarks 2:4
and 5:10 are two distinct curves, one would specifiy corrCurves = list(c(2:4), c(5:10)).
patchCurves a vector or a list containing vectors specifiyng the rowindices of landmarks to be
curves that are defined ONLY on the atlas. E.g. if coordinates 5:10 and 20:40 on
the patch are two distinct curves, one would specifiy patchCurves = 1ist(c(5:10),c(20:40)).
keep.fix in case corrCurves are set, specify explicitly which landmarks are not allowed
to slide during projection (with placePatch)
Value

Returns a list of class "atlas". Its content is corresponding to argument names.

Note

This is a helper function of placePatch.

See Also

placePatch, plotAtlas

Examples

data(nose)
atlas <- createAtlas(shortnose.mesh, landmarks =
shortnose.lm[c(1:5,20:21),], patch=shortnose.1lm[-c(1:5,20:21),])

CreateL 23

CreatelL Create Matrices necessary for Thin-Plate Spline

Description

Create (Bending Engergy) Matrices necessary for Thin-Plate Spline, and sliding of Semilandmarks

Usage

CreateL(matrix, lambda = @, blockdiag = TRUE)

Arguments

matrix k x 3 or k x 2 matrix containing landmark coordinates.

lambda numeric: regularization factor

blockdiag logical: request blockdiagonal matrix Lsubk3 needed for sliding of semiland-

marks.

Value

L Matrix L as specified in Bookstein (1989)

Linv Inverse of matrix L as specified in Bookstein (1989)

Lsubk uper left k x k submatrix of Linv

Lsubk3 Matrix used for sliding in slider3d and relaxLM. Only available if blockdiag = TRUE
Note

This function is not intended to be called directly - except for playing around to grasp the mechan-
sims of the Thin-Plate Spline.

References

Gunz, P, P. Mitteroecker, and F. L. Bookstein. 2005. Semilandmarks in Three Dimensions, in
Modern Morphometrics in Physical Anthropology. Edited by D. E. Slice, pp. 73-98. New York:
Kluwer Academic/Plenum Publishers.

Bookstein FL. 1989. Principal Warps: Thin-plate splines and the decomposition of deformations.
IEEE Transactions on pattern analysis and machine intelligence 11(6).

See Also

tps3d, warp.mesh

24

Examples

require(rgl)

data(boneData)

L <- CreatelL(bonelLM[,,11)

calculate Bending energy between first and second specimen:
be <- t(bonelML,,2]1)%x%L$Lsubk%x%bonelLM[, ,2]

calculate Frobenius norm

sqrt(sum(be*2))

the amount is dependant on on the squared scaling factor

scale landmarks by factor 5 and compute bending energy matrix
be2 <- t(bonelM[, ,2]1*5)%*%L$Lsubk%x%(bonelLM[, ,2]*5)
sqrt(sum(be2*2)) # exactly 25 times the result from above

also this value is not symmetric:

L2 <- CreatelL(bonelLM[,,21)

be3 <- t(bonelM[, ,11)%*%L2$Lsubk%*%bonelLM[, ,1]
sqrt(sum(be3*2))

Crossp

crossp

calculate the orthogonal complement of a 3D-vector

Description

calculate the orthogonal complement of a 3D-vector

Usage

crossp(x, y)

tanplan(x)
Arguments
X vector of length 3.
y vector of length 3.
Details

calculate the orthogonal complement of a 3D-vector or the 3D-crossproduct, finding an orthogonal

vector to a plane in 3D.

Value

tanplan:

crossp: returns a vector of length 3.

y vector orthogonal to x

vector orthogonal to x and y

cSize

Author(s)

Stefan Schlager

Examples

require(rgl)

x <- ¢(1,0,0)
y <= ¢(9,1,0)

#texample tanplan

z <- tanplan(x)

#visualize result

Not run:

lines3d(rbind(@, x), col=2, lwd=2)

show complement

lines3d(rbind(z$y, 0, z$z), col=3, lwd=2)

End(Not run)

example crossp

z <- crossp(x, y)

show x and y

Not run:

lines3d(rbind(x, @, y), col=2, lwd=2)
show z

lines3d(rbind(@, z), col=3, lwd=2)

End(Not run)

cSize calculate Centroid Size for a landmark configuration

Description

calculate Centroid Size for a landmark configuration

Usage

cSize(x)

Arguments

X matrix where each row contains coordinates for landmarks

Value

returns Centroid size

26 cutSpace

Examples

data(boneData)
cSize(bonelM[,,11)

cutMeshPlane cut a mesh by a hyperplane and remove parts above/below that plane

Description

cut a mesh by a hyperplane and remove parts above/below that plane

Usage

cutMeshPlane(mesh, v1, v2, v3, keep.upper = TRUE)

Arguments
mesh triangular mesh of class "mesh3d"
v numeric vector of length=3 specifying a point on the separating plane
v2 numeric vector of length=3 specifying a point on the separating plane
v3 numeric vector of length=3 specifying a point on the separating plane
keep.upper logical specify whether the points above or below the plane are should be kept
Details

see cutSpace for more details.

Value

mesh with part above/below hyperplane removed

cutSpace separate a 3D-pointcloud by a hyperplane

Description

separate a 3D-pointcloud by a hyperplane

Usage

cutSpace(pointcloud, v1, v2, v3, upper = TRUE)

CVA 27

Arguments
pointcloud numeric n X 3 matrix
vi numeric vector of length=3 specifying a point on the separating plane
v2 numeric vector of length=3 specifying a point on the separating plane
v3 numeric vector of length=3 specifying a point on the separating plane
upper logical specify whether the points above or below the plane are to be reported as
TRUE.
Details

As above and below are specified by the normal calculated from (v2 — v1) x (v3 — v1), where
x denotes the vector crossproduct. This means the normal points "upward" when viewed from the
positon where v1, v2 and v3 are arranged counter-clockwise. Thus, which side is "up" depends on
the ordering of v1, v2 and v3.

Value

logical vector of length n. Reporting for each point if it is above or below the hyperplane

Examples

data(nose)

vl <- shortnose.1m[1,]

v2 <- shortnose.1m[2,]

v3 <- shortnose.1m[3,]

pointcloud <- vert2points(shortnose.mesh)
upper <- cutSpace(pointcloud, v1, v2, v3)
Not run:

points3d(pointcloud[upper,])

End(Not run)

CVA Canonical Variate Analysis

Description

performs a Canonical Variate Analysis.

Usage

CVA(dataarray, groups, weighting = TRUE, tolinv = 1le-10, plot = TRUE,
rounds = 0, cv = FALSE)

28

Arguments

dataarray

groups

weighting

tolinv

plot

rounds

cv

Value

cv
CVscores

Grandm

groupmeans

Var

CVvis

Dist

CVev
groups

class

posterior

prior

Author(s)

Stefan Schlager

CVA

Either a k x m X n real array, where k is the number of points, m is the number
of dimensions, and n is the sample size. Or alternatively a n X m Matrix where
n is the numeber of observations and m the number of variables (this can be PC
scores for example)

a character/factor vector containgin grouping variable.

Logical: Determines whether the between group covariance matrix and Grand-
mean is to be weighted according to group size.

Threshold for the eigenvalues of the pooled within-group-covariance matrix to
be taken as zero - for calculating the general inverse of the pooled withing groups
covariance matrix.

Logical: determins whether in the two-sample case a histogramm ist to be plot-
ted.

integer: number of permutations if a permutation test of the Mahalanobis dis-
tances (from the pooled within-group covariance matrix) and Euclidean distance
between group means is requested.If rounds = 0, no test is performed.

logical: requests a Jackknife Crossvalidation.

A matrix containing the Canonical Variates
A matrix containing the individual Canonical Variate scores

a vector or a matrix containing the Grand Mean (depending if the input is an
array or a matrix)

a matrix or an array containing the group means (depending if the input is an
array or a matrix)

Variance explained by the Canonical Variates

Canonical Variates projected back into the original space - to be used for visual-
ization purposes, for details see example below

Mahalanobis Distances between group means - if requested tested by permuta-
tion test if the input is an array it is assumed to be superimposed Landmark Data
and Procrustes Distance will be calculated

A matrix containing crossvalidated CV scores
factor containing the grouping variable

classification results based on posteriror probabilities. If cv=TRUE, this will be
done by a leaving-one-out procedure

posterior probabilities

prior probabilities

CVA 29

References

Cambell, N. A. & Atchley, W. R.. 1981 The Geometry of Canonical Variate Analysis: Syst. Zool.,
30(3), 268-280.

Klingenberg, C. P. & Monteiro, L. R. 2005 Distances and directions in multidimensional shape
spaces: implications for morphometric applications. Systematic Biology 54, 678-688.

See Also

groupPCA

Examples

all examples are kindly provided by Marta Rufino

library(shapes)
perform procrustes fit on raw data
alldat<-procSym(abind(gorf.dat,gorm.dat))
create factors
groups<-as.factor(c(rep("female”,30),rep("male”,29)))
perform CVA and test Mahalanobis distance
between groups with permutation test by 100 rounds)
cvall<-CVA(alldat$orpdata, groups, rounds=10000)
visualize a shape change from score -5 to 5:
cvvis5 <- 5xmatrix(cvall$CVvis[,1],nrow(cvall$Grandm),ncol(cvall$Grandm))+cvall$Grandm
cvvisNegh <- -5xmatrix(cvall$CVvis[,1],nrow(cvall$Grandm),ncol(cvall$Grandm))+cvall$Grandm
plot(cvvis5,asp=1)
points(cvvisNeg5,col=2)
for (i in 1:nrow(cvvisNeg5))
lines(rbind(cvvis5[i,],cvvisNeg5[i, 1))

Morpho CVA
data(iris)

vari <- iris[,1:4]
facto <- iris[,5]

cva.1=CVA(vari, groups=facto)

plot the CVA

plot(cva.1$CVscores, col=facto, pch=as.numeric(facto), typ="n",6asp=1,
xlab=paste("1st canonical axis”, paste(round(cva.l1$vVar[1,2]1,1),"%")),
ylab=paste(”2nd canonical axis"”, paste(round(cva.1$Var[2,2]1,1),"%")))

text(cva.1$CVscores, as.character(facto), col=as.numeric(facto), cex=.7)

add chull (merge groups)
for(jj in 1:length(levels(facto))){
ii=levels(facto)[jj]
kk=chull(cva.1$CVscores[facto==ii,1:2])
lines(cva.1$CVscores[facto==ii,1][c(kk, kk[11)],
cva.1$CVscores[facto==ii,2][c(kk, kk[11)], col=jj)
}

30

CVA

add 80% ellipses
require(car)
for(ii in 1:length(levels(facto))){
dataEllipse(cva.1$CVscores[facto==levels(facto)[ii], 1],
cva.1$CVscores[facto==levels(facto)[ii], 2],
add=TRUE, levels=.80, col=c(1:7)[iil)}

histogram per group
require(lattice)
histogram(~cva.1$CVscores[,1]]|facto,
layout=c(1,length(levels(facto))),
xlab=paste(”1st canonical axis"”, paste(round(cva.1$Var[1,2]1,1),"%")))
histogram(~cva.1$CVscores[,2]|facto, layout=c(1,length(levels(facto))),
xlab=paste(”2nd canonical axis"”, paste(round(cva.1$vVar[2,2]1,1),"%")))

plot Mahalahobis

dendroS=hclust(cva.1$Dist$GroupdistMaha)

dendroS$labels=levels(facto)

par(mar=c(4,4.5,1,1))

dendroS=as.dendrogram(dendroS)

plot(dendroS, main='"',6sub="'", xlab="Geographic areas”,
ylab='Mahalahobis distance')

Variance explained by the canonical roots:
cva.1$Var

or plot it:

barplot(cva.1$Var[,2])

another landmark based example in 3D:

data(boneData)

groups <- name2factor(bonelM,which=3:4)

proc <- procSym(bonelLM)

cvall<-CVA(proc$orpdata, groups)

#' ## visualize a shape change from score -5 to 5:

cvvis5 <- 5*matrix(cvall$CVvis[,1],nrow(cvall$Grandm),ncol(cvall$Grandm))+cvall$Grandm
cvvisNeg5 <- -5*matrix(cvall$CVvis[,1],nrow(cvall$Grandm),ncol(cvall$Grandm))+cvall$Grandm
Not run:

#visualize it

deformGrid3d(cvvis5,cvvisNeg5,ngrid = 0)

End(Not run)

#for using (e.g. the first 5) PCscores, one will do:
cvall <- CVA(proc$PCscores[,1:5],groups)

#' ## visualize a shape change from score -5 to 5:

cvvis5 <- 5xcvall$CVvis[,1]+cvall$Grandm

cvvisNegh <- -5%cvall$CVvis[,1]+cvall$Grandm

cvvis5 <- showPC(cvvis5,proc$PCs[,1:5],proc$mshape)
cvvisNeg5 <- showPC(cvvisNeg5,proc$PCs[,1:5],proc$mshape)
Not run:

#visualize it

deformGrid3d(cvvis5,cvvisNeg5,ngrid = 0)

deformGrid3d 31

End(Not run)

deformGrid3d visualise differences between two superimposed sets of 3D landmarks

Description

visualise differences between two superimposed sets of 3D landmarks by deforming a cubic grid
based on a thin-plate spline interpolation

Usage

deformGrid3d(matrix, tarmatrix, ngrid = @, lwd = 1, showaxis = c(1, 2),
both = T, lines = TRUE, lcol = 1, add = FALSE, coll = 2, col2 = 3,
type = c("s", "p"), size = NULL)

Arguments
matrix reference matrix containing 3D landmark coordinates or mesh of class "mesh3d"
tarmatrix target matrix containing 3D landmark coordinates or mesh of class "mesh3d"
ngrid number of grid lines to be plotted; ngrid=0 suppresses grid creation.
lwd width of lines connecting landmarks.
showaxis integer (vector): which dimensions of the grid to be plotted. Options are combi-
nations of 1,2 and 3.
both logical: if FALSE, only "matrix" will be plotted.
lines logical: if TRUE, lines between landmarks will be plotted.
lcol color of lines
add logical: add to existing rgl window.
coll color of "matrix"
col2 color of "tarmat"
type "s" renders landmarks as spheres; "p" as points - much faster for very large
pointclouds.
size control size/radius of points/spheres
Author(s)
Stefan Schlager
See Also

tps3d

32 exVar

Examples

Not run:
data(nose)
deformGrid3d(shortnose.1lm,longnose.1lm,ngrid=10)

End(Not run)

exVar calculate variance of a distribution stemming from prediction models

Description

calculates a quotient of the overall varriance within a predicted distribution to that from the original
one. This function calculates a naive extension of the univariate R*2-value by dividing the variance
in the predicted dat by the variance of the original data. No additional adjustments are made!!

Usage
exVar(model, ...)

S3 method for class 'lm'
exVar(model, ...)

S3 method for class 'mvr'

exVar(model, ncomp, val = FALSE, ...)

Arguments
model a model of classes "Im" or "mvr" (from the package "pls")
ncomp How many latent variables to use (only for mvr models)
val use cross-vaildated predictions (only for mvr models)

currently unused additional arguments.

Value

returns the quotient.

Note

The result is only!! a rough estimate of the variance explained by a multivariate model. And the
result can be misleading - especially when there are many predictor variables involved. If one is
interested in the value each factor/covariate explains, we recommend a 50-50 MANOVA perfomed
by the R-package "ffmanova", which reports this value factor-wise.

Author(s)

Stefan Schlager

file2mesh 33

References

Langsrud O, Juergensen K, Ofstad R, Naes T. 2007. Analyzing Designed Experiments with Multi-
ple Responses Journal of Applied Statistics 34:1275-1296.

Examples

Im1 <- Im(as.matrix(iris[,1:4]) ~ iris[,5])
exVar(1m1)

file2mesh Import 3D surface mesh files

Description

Import 3D surface mesh files

Usage

file2mesh(filename, clean = TRUE, readcol = FALSE)

TRUE)

obj2mesh(filename, adnormals

ply2mesh(filename, adnormals = TRUE, readnormals = FALSE, readcol = FALSE,
silent = FALSE)

Arguments
filename character: path to file
clean Logical: Delete dumpfiles.
readcol Logical: Import vertex colors (if available).
adnormals Logical: If the file does not contain normal information, they will be calculated
in R: Can take some time.
readnormals Logical: Import vertex normals (if available), although no face information is
present.
silent logical: suppress messages.
Details

imports 3D mesh files and store them as an R .object of class mesh3d

Value

mesh list of class mesh3d - see rgl manual for further details, or a matrix containing
vertex information or a list containing vertex and normal information

34

Examples

data(nose)

find.outliers

mesh2ply(shortnose.mesh)
mesh <- ply2mesh("”shortnose.mesh.ply")

mesh2obj(shortnose.mesh)
mesh2 <- obj2mesh("shortnose.mesh.obj")

find.outliers

Graphical interface to find outliers and/or to switch mislabeld land-
marks

Description

Graphical interface to find outliers and/or to switch mislabeld landmarks

Usage

find.outliers(A, color = 4, 1wd = 1, 1lcol = 2, mahalanobis = FALSE,
PCuse = NULL, text = TRUE)

Arguments

A

color

1wd

lcol
mahalanobis
PCuse

text

Details

Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size.

color of Landmarks points to be plotted

linewidth visualizing distances of the individual landmarks from mean.
color of lines visualizing distances of the individual landmarks from mean.
logical: use mahalanobis distance to find outliers.

integer: Restrict mahalanobis distance to the first n Principal components.

logical: if TRUE, landmark labels (rownumbers) are displayed

This function performs a procrustes fit and sorts all specimen according to their distances (either
Procrustes or Mahalanobis-distance) to the sample’s consensus. It provides visual help for rearrang-
ing landmarks and/or excluding outliers.

Value

data.cleaned

outlier

dist.sort

type

array (in original coordinate system) containing the changes applied and outliers
eliminated

vector with integers indicating the positions in the original array that have been
marked as outliers

table showing the distance to mean for each observation - decreasing by distance
what kind of distance was used

fixLMmirror 35

Author(s)

Stefan Schlager

See Also
typprob,typprobClass

Examples

data(boneData)

look for outliers using the mahalanobis distance based on the first

10 PCscores

to perform the example below, you need,of course, uncomment the answers
Not run:

outliers <- find.outliers(bonelLM, mahalanobis= TRUE, PCuse=10)

everything is fine

proceed to next

let's switch some landmarks (3 and 4)

=}

we are done
y # yes, because now it is an outlier
s #enough for now

ETE T T
>

End(Not run)

fixLMmirror estimate missing landmarks from their bilateral counterparts

Description

estimate missing landmarks from their bilateral counterparts

Usage

fixLMmirror(x, pairedLM)

S3 method for class 'array'
fixLMmirror(x, pairedLM)

S3 method for class 'matrix'
fixLMmirror(x, pairedLM)

Arguments
X a matrix or an array containing landmarks (3D or 2D)
pairedLM a k x 2 matrix containing the indices (rownumbers) of the paired LM. E.g. the

left column contains the lefthand landmarks, while the right side contains the
corresponding right hand landmarks.

36 fixLMtps

Details

the configurations are mirrored and the relabled version is matched onto the original using a thin-
plate spline deformation. The missing landmark is now estimated using its bilateral counterpart.

Value

a matrix or array with fixed missing bilateral landmarks.

Note

in case both landmarks of a bilateral pair are missing a message will be issued. As well if there are
missing landmarks on the midsaggital plane are detected.

Examples

data(boneData)

left <- c(4,6,8)

determine corresponding Landmarks on the right side:
important: keep same order

right <- ¢(3,5,7)

pairedlM <- cbind(left, right)

exampmat <- bonelLM[,,1]

exampmat[4,] <- NA #set 4th landmark to be NA
fixed <- fixLMmirror(exampmat, pairedLM=pairedLM)
Not run:

deformGrid3d(fixed, bonelLM[,,1],ngrid=0)

result is a bit off due to actual asymmetry

End(Not run)

fixLMtps estimate missing landmarks

Description

Missing landmarks are estimated by deforming a sample average or a weighted estimate of the
configurations most similar onto the deficient configuration. The deformation is performed by a
Thin-plate-spline interpolation calculated by the available landmarks.

Usage

fixLMtps(data, comp = 3, weight = TRUE)

fixLMtps

Arguments

data

comp

weight

Details

37

array containing landmark data

integer: select how many of the closest observations are to be taken to calculate
an initial estimate.

logical: requests the calculation of an estimate based on the procrustes distance.
Otherwise the sample’s consensus is used as reference.

This function tries to estimate missing landmark data by mapping weighted averages from complete
datasets onto the missing specimen. The weights are the inverted Procrustes (see proc.weight)
distances between the comp’ closest specimen (using the available landmark configuration).

Value

out
mshape
checklist

check

Note

array containing all data, including fixed configurations - same order as input
meanshape - calculated from complete datasets
list containing information about missing landmarks

vector containing position of observations in data where at least one missing
coordinate was found

Be aware that these estimates might be grossly wrong when the missing landmark is quite far off
the rest of the landmarks (due to the radial basis function used in the Thin-plate spline interpolation.

Author(s)

Stefan Schlager

References

Bookstein FL. 1989. Principal Warps: Thin-plate splines and the decomposition of deformations
IEEE Transactions on pattern analysis and machine intelligence 11.

See Also

proc.weight, tps3d

Examples

require(rgl)
require(shapes)
data <- gorf.dat

set first landmark of first specimen to NA

datal1,,1] <- NA

repair <- fixLMtps(data,comp=5)
view difference between estimated and actual landmark
plot(repair$out[,,1],asp=1,pch=21,cex=0.7,col=2)#estimated landmark

38

getTrafo4x4

points(gorf.dat[,,1],col=3,pch=20)#actual landmark

3D-example:

data(boneData)

data <- bonelLM

set first and 5th landmark of first specimen to NA
datalc(1,5),,1] <= NA

repair <- fixLMtps(data,comp=10)

view difference between estimated and actual landmark
Not run:

deformGrid3d(repair$out[,,1], bonelLM[,,1],ngrid=0)

End(Not run)

getFaces find indices of faces that contain specified vertices

Description

find indices of faces that contain specified vertices

Usage

getFaces(mesh, index)

Arguments

mesh triangular mesh of class "mesh3d"

index vector containing indices of vertices

Value

vector of face indices

getTrafo4x4 get 4x4 Transformation matrix

Description

get 4x4 Transformation matrix

Usage

getTrafo4x4(x)

S3 method for class 'rotonto’
getTrafodx4(x)

getTrafoRotaxis 39

Arguments

X object of class "rotonto"

Value

returns a 4x4 transformation matrix

Examples

data(boneData)
rot <- rotonto(bonelM[,,1],bonelLM[,,2])
trafo <- getTrafo4x4(rot)

getTrafoRotaxis compute a 4x4 Transformation matrix for rotation around an arbitrary
axis

Description

compute a 4x4 Transformation matrix for rotation around an arbitrary axis

Usage

getTrafoRotaxis(pt1, pt2, theta)

Arguments
pt1 numeric vector of length 3, defining first point on the rotation axis.
pt2 numeric vector of length 3, defining second point on the rotation axis.
theta angle to rotate in radians. With ptl being the viewpoint, the rotation is counter-
clockwise.
Note

the resulting matrix can be used in applyTransform

40 groupPCA

groupPCA Perform PCA based of the group means’ covariance matrix

Description

Calculate covariance matrix of the groupmeans and project all observations into the eigenspace of
this covariance matrix. This displays a low dimensional between group structure of a high dimen-
sional problem.

Usage

groupPCA(dataarray, groups, rounds = 10000, tol 1e-10, cv = TRUE,

mc.cores = parallel::detectCores(), weighting = TRUE)
Arguments

dataarray Either a k x m x n real array, where k is the number of points, m is the number
of dimensions, and n is the sample size. Or alternatively a n x m Matrix where
n is the numeber of observations and m the number of variables (this can be PC
scores for example)

groups a character/factor vector containgin grouping variable.

rounds integer: number of permutations if a permutation test of the euclidean distance
between group means is requested.If rounds = 0, no test is performed.

tol threshold to ignore eigenvalues of the covariance matrix.

cv logical: requests leaving-one-out crossvalidation

mc.cores integer: how many cores of the Computer are allowed to be used. Default is
use autodetection by using detectCores() from the parallel package. Parallel
processing is disabled on Windows due to occasional errors.

weighting logical:weight between groups covariance matrix according to group sizes.

Value

eigenvalues Non-zero eigenvalues of the groupmean covariance matrix

groupPCs PC-axes - i.e. eigenvectors of the groupmean covariance matrix

Variance table displaying the variance explained by eache eigenvalue

Scores Scores of all observation in the PC-space

probs p-values of pairwise groupdifferences - based on permuation testing

groupdists Euclidean distances between groups’ averages

groupmeans Groupmeans

Grandmean Grand mean

cv Cross-validated scores

groups grouping Variable

groupPCA 41

Author(s)

Stefan Schlager

References

Mitteroecker P, Bookstein F 2011. Linear Discrimination, Ordination, and the Visualization of
Selection Gradients in Modern Morphometrics. Evolutionary Biology 38:100-114.

Boulesteix, A. L. 2005: A note on between-group PCA, International Journal of Pure and Applied
Mathematics 19, 359-366.

See Also
CVA

Examples

require(car)

data(iris)

vari <- iris[,1:4]

facto <- iris[,5]

pca.1 <-groupPCA(vari,groups=facto, rounds=100,mc.cores=1)

plot scores
scatterplotMatrix(pca.1$Scores, groups=facto, ellipse=TRUE,
by.groups=TRUE,var.labels=c("PC1","PC2","PC3"))

example with shape data

data(boneData)

proc <- procSym(bonelLM)

pop_sex <- name2factor(boneLM, which=3:4)

gpca <- groupPCA(proc$orpdata, groups=pop_sex, rounds=0, mc.cores=2)
Not run:

visualize shape associated with first between group PC

dims <- dim(proc$mshape)

calculate matrix containing landmarks of grandmean

grandmean <- matrix(gpca$Grandmean, dims[1], dims[2])

calculate landmarks from first between-group PC

(+2 and -2 standard deviations)

gpcavis2sd<- showPC(2xsd(gpca$Scores[,1]), gpca$groupPCs, grandmean)
gpcavis2sd.neg<- showPC(-2xsd(gpca$Scores[,1]), gpca$groupPCs, grandmean)
deformGrid3d(gpcavis2sd, gpcavis2sd.neg, ngrid = 0)

require(rgl)

visualize grandmean mesh

grandm.mesh <- warp.mesh(skull_0144_ch_fe.mesh, bonelLM[,,1],grandmean)
wire3d(grandm.mesh, col="white")

spheres3d(grandmean, radius=0.005)

End(Not run)

42 histGroup

histGroup plot histogram for multiple groups.

Description

plot a histogram for multiple groups, each group colored individually

Usage

histGroup(data, groups, main = paste("Histogram of"”, dataname),
xlab = dataname, ylab, col = NULL, alpha = 0.5, breaks = "Sturges”,
legend = TRUE, legend.x = 80, legend.y = 8@, legend.pch = 15,

freq = TRUE)
Arguments
data vector containing data.
groups grouping factors

main,xlab,ylab these arguments to title have useful defaults here.

col vector containing color for each group. If NULL, the function "rainbow" is
called.

alpha numeric between 0 and 1. Sets the transparency of the colors

breaks one of:

* avector giving the breakpoints between histogram cells,
* asingle number giving the number of cells for the histogram,

* acharacter string naming an algorithm to compute the number of cells (see
‘Details’),
* a function to compute the number of cells.

In the last three cases the number is a suggestion only.

legend logical: if TRUE, a legend is plotted

legend.x x position of the legend from the upper left corner

legend.y y position of the legend from the upper left corners

legend.pch integer: define the symbol to visualise group colors (points)

freq logical: if TRUE, the histogram graphic is a representation of frequencies, the
counts component of the result; if FALSE, probability densities are plotted for
each group.

Details

Just a wrapper for the function hist from the "graphics" package

Author(s)

Stefan Schlager

icpmat 43
See Also
hist

Examples

data(iris)
histGroup(iris$Petal.Length,iris$Species)

icpmat match two landmark configurations using iteratively closest point
search

Description

match two landmark configurations using iteratively closest point search

Usage

icpmat(x, y, iterations, mindist = 1e+15, subsample = NULL, scale = FALSE)

Arguments
X moving landmarks
y target landmarks
iterations integer: number of iterations
mindist restrict valid points to be within this distance
subsample use a subsample determined by kmean clusters to speed up computation
scale logical: if TRUE, scaling is allowed
Value

returns the rotated landmarks

Examples

data(nose)
icp <- icpmat(shortnose.lm,longnose.lm,iterations=10@,subsample = 20)

##2D example wusing icpmat to determine point correspondences
require(shapes)

we scramble rows to show that this is independent of point order
moving <- gorf.dat[sample(1:8),,1]

plot(moving,asp=1) ## starting config

icpgorf <- icpmat(moving,gorf.dat[,,2],iterations = 20)
points(icpgorf,asp = 1,col=2)

points(gorf.datl,,2],col=3)## target

44

get correspondences using nearest neighbour search
index <- mcNNindex(icpgorf,gorf.dat[,,2],k=1,cores=1)
icpsort <- icpgorf[index,]

for (i in 1:8)
lines(rbind(icpsort[i,],gorf.dat[i,,2]))

lineplot

kendalldist Calculates the Riemannian distance between two superimposed land-

mark configs.

Description

Calculates the Riemannian distance between two superimposed landmark configs.

Usage
kendalldist(x, y)

Arguments
X Matrix containing landmark coordinates.
y Matrix containing landmark coordinates.
Value

returns Riemannian distance

Examples

library(shapes)
OPA <- rotonto(gorf.dat[,,1],gorf.dat[,,2])
kendalldist (OPA$X,0PA$Y)

lineplot plot lines between landmarks

Description

add lines connecting landmarks to visualise a sort of wireframe

Usage

lineplot(x, point, col =1, 1Iwd = 1, line_antialias = FALSE, add = TRUE)

mcNNindex 45

Arguments
X matrix containing 2D or 3D landmarks
point vector or list of vectors containing rowindices of x, determining which land-
marks to connect.
col color of lines
lwd line width
line_antialias logical: smooth lines
add logical: add to existing plot
Note

works with 2D and 3D configurations

Author(s)

Stefan Schlager

See Also

pcaplot3d

Examples

require(rgl)

library(shapes)

##2D example

plot(gorf.dat[,,1],asp=1)
lineplot(gorf.dat[,,1],point=c(1,5:2,8:6,1),col=2)

##3D example

Not run:

data(nose)

points3d(shortnose.1m[1:9,])
lineplot(shortnose.1m[1:9,],point=1ist(c(1,3,2),c(3,4,5),c(8,6,5,7,9)),col=2)

End(Not run)

mcNNindex find nearest neighbours for point clouds

Description

find nearest neighbours for point clouds by using algorithms from the ANN library. This is just a
wrapper for the function ann from the package yalmpute, enabling parallel processing.

46 meanMat

Usage
mcNNindex(target, query, cores = parallel::detectCores(), k = k, ...)
Arguments
target k x m matrix containing data which to search.
query 1 x m matrix containing data for which to search.
cores integer: amount of CPU-cores to be used. Speed benefits are only relevant for
k > 20
k integer: how many closest points are sought.
additional arguments - currently unused.
Details

wraps the function ann from package "yalmpute’ to allow multicore processing

Value

1 x k matrix containing indices of closest points.

See Also

closemeshKD

Examples

require(rgl)

data(nose)

find closest vertex on surface for each landmark

clost <- mcNNindex(vert2points(shortnose.mesh),shortnose.lm, k=1,
mc.cores=1)

Not run:
spheres3d(vert2points(shortnose.mesh)[clost,],col=2,radius=0.3)
spheres3d(shortnose.1lm,radius=0.3)

wire3d(shortnose.mesh)

End(Not run)

meanMat fast calculation of a Matrix’ per row/ per column mean - useful for
very large matrices

Description

fast calculation of a Matrix’ per row/ per column mean - equivalent to apply(X,2,mean) or apply(X,1,mean)-
useful for very large matrices

mergeMeshes

Usage

meanMat (A, usedim = 2)

Arguments

A numeric matrix

usedim integer: select over which dimension to average
Value

vector containing row/column mean

Examples

A <- matrix(rnorm(1e6),1000,1000)
b <- meanMat(A)

same as apply(A,2,mean)

b1 <- meanMat(A,1)

same as apply(A,1,mean)

Not run:

#compare timing

system. time(meanMat(A))
system.time(apply(A,2,mean))

End(Not run)

mergeMeshes merge multiple triangular meshes into a single one

Description

merge multiple triangular meshes into a single one, preserving color and vertex normals.

Usage

mergeMeshes(...)

Arguments

triangular meshes of class 'mesh3d' to merge or a list of triangular meshes.

Value

returns the meshes merged into a single one.

See Also

mesh2ply, file2mesh, ply2mesh

48 mesh2grey

Examples

require(rgl)

data(boneData)

data(nose)

mergedMesh <- mergeMeshes(shortnose.mesh, skull_0144_ch_fe.mesh)
Not run:

require(rgl)

shade3d(mergedMesh, col=3)

End(Not run)

mesh2grey convert a colored mesh to greyscale.

Description

convert the colors of a colored mesh to greyscale values

Usage

mesh2grey(mesh)

Arguments

mesh Object of class mesh3d

Value

returns a mesh with material$color replaced by greyscale rgb values.

Author(s)

Stefan Schlager

See Also

ply2mesh,file2mesh

mesh2obj 49

mesh2obj export mesh objects to disk

Description

export mesh objects to disk.

Usage

mesh2obj(x, filename = dataname)

mesh2ply(x, filename = dataname, col = NULL, writeNormals = FALSE)

Arguments
X object of class mesh3d - see rgl documentation for further details or a matrix
containing vertices, this can either be ak x 3 ora 3 x k matrix, with rows or
columns containing vertex coordinates.
filename character: Path/name of the requested output - extension will be added atuomat-
ically. If not specified, the file will be named as the exported object.
col Writes color information to ply file. Can be either a single color value or a vector

containing a color value for each vertex of the mesh.

writeNormals logical: if TRUE, existing normals of a mesh are written to file - can slow things
down for very large meshes.

Details

export an object of class mesh3d or a set of coordinates to a common mesh file.

Note

meshes containing quadrangular faces will be converted to triangular meshes by splitting the faces.

Author(s)

Stefan Schlager

See Also

ply2mesh, quad2trimesh

50 meshcube

Examples
require(rgl)
vb <- ¢(-1.8,-1.8,-1.8,1.0,1.8,-1.8,-1.8,1.0,-1.8,1.8,-1.8,1.0,1.8,
1.8,-1.8,1.0,-1.8,-1.8,1.8,1.0,1.8,
-1.8,1.8,1.0,-1.8,1.8,1.8,1.0,1.8,1.8,1.8,1.0)
it <- ¢(2,1,3,3,4,2,3,1,5,5,7,3,5,1,2,2,6,5,6,8,7,7,5,6,7,8,4,4,3,7,4,8,6,6,2,4)

vb <- matrix(vb,4,8) #i#create vertex matrix
it <- matrix(it,3,12) ## create face matrix
cube<-list(vb=vb,it=it)

class(cube) <- "mesh3d”

Not run:

shade3d(cube,col=3) ## view the green cube

End(Not run)
mesh2ply(cube, filename="cube") # write cube to a file called cube.ply

meshcube calculate the corners of a mesh’s bouning box

Description

calculate the corners of a mesh’s bouning box

Usage

meshcube (x)

Arguments

X object of class 'mesh3d’

Value

returns a 8 x 3 matrix with the coordinates of the corners of the bounding box.

Examples

require(rgl)

data(boneData)

mc <- meshcube(skull_0144_ch_fe.mesh)
Not run:

spheres3d(mc)
wire3d(skull_0144_ch_fe.mesh)

End(Not run)

meshDist.matrix 51

meshDist.matrix calculates and visualises distances between surface meshes or 3D co-
ordinates and a surface mesh.

Description

calculates and visualises distances between surface meshes or 3D coordinates and a surface mesh.

Usage

S3 method for class 'matrix'

meshDist(x, mesh2 = NULL, distvec = NULL, from = NULL,
to = NULL, steps = 20, ceiling = FALSE, uprange = 1, plot = TRUE,
sign = TRUE, tol = NULL, type = c("s", "p"), radius = NULL,
displace = FALSE, add = FALSE, ...)

meshDist(x, ...)

S3 method for class 'mesh3d'

meshDist(x, mesh2 = NULL, distvec = NULL, from = NULL,
to = NULL, steps = 20, ceiling = FALSE, file = "default”,
imagedim = "100x800", uprange = 1, ray = FALSE, raytol = 50,
save = FALSE, plot = TRUE, sign = TRUE, tol = NULL,
displace = FALSE, shade = TRUE, method = c("morpho”, "vcglib"),

add = FALSE, ...)
Arguments

X reference mesh; object of class "mesh3d" or a n x 3 matrix containing 3D coor-
dinates.

mesh2 target mesh: either object of class "mesh3d" or a character pointing to a surface
mesh (ply, obj or stl file)

distvec vector: optional, a vector containing distances for each vertex of meshl, if
distvec != NULL, x will be ignored.

from numeric: minimum distance to be colorised; default is set to 0 mm

to numeric: maximum distance to be colorised; default is set to the maximum
distance

steps integer: determines break points for color ramp: n steps will produce n-1 colors.

ceiling logical: if TRUE, the next larger integer of "to" is used

uprange numeric between 0 and 1: restricts "to" to a quantile of "to", if to is NULL.

plot logical: visualise result as 3D-plot and distance charts

sign logical: request signed distances. Only meaningful, if mesh2 is specified or

distvec contains signed distances.

tol numeric: threshold to color distances within this threshold green.

52

type
radius

displace

add

file

imagedim

ray
raytol
save
shade
method

Details

meshDist.matrix

character: "s" shows coordinates as spheres, while "p" shows 3D dots.

determines size of spheres; if not specified, optimal radius size will be estimated
by centroid size of the configuration.

logical: if TRUE, displacement vectors between original and closest points are
drawn colored according to the distance.

logical: if TRUE, visualization will be added to the rgl window currently in
focus

character: filename for mesh and image files produced. E.g. "mydist" will
produce the files mydist.ply and mydist.png

character of type 100x200 where 100 determines the width and 200 the height
of the image.

logical: if TRUE, the search is along vertex normals.

maximum distance to follow a normal.

logical: save a colored mesh.

logical: if FALSE, the rendering of the colored surface will be supressed.

accepts: "vcglib" and "morpho” (and any abbreviation). vcglib uses a command
line tool using vecglib headers, morpho uses fortran routines based on a kd-tree
search for closest triangles.

additional arguments passed to shade3d. See rgl.material for details.

calculates the distances from a mesh or a set of 3D coordinates to another at each vertex; either
closest point or along the normals

this function needs the command line tools from the Auxiliaries section in http://sourceforge.
net/projects/morpho-rpackage/files/Auxiliaries installed.

Value

Returns an object of class "meshDist" if the input is a surface mesh and one of class "matrixDist" if
input is a matrix containing 3D coordinates.

colMesh
dists
cols

params

Author(s)

Stefan Schlager

References

object of mesh3d with colors added
vector with distances
vector with color values

list of parameters used

Detection of inside/outside uses the algorithm proposed in:

Baerentzen, Jakob Andreas. & Aanaes, H., 2002. Generating Signed Distance Fields From Triangle
Meshes. Informatics and Mathematical Modelling, .

http://sourceforge.net/projects/morpho-rpackage/files/Auxiliaries
http://sourceforge.net/projects/morpho-rpackage/files/Auxiliaries

meshPlanelntersect 53

See Also

render.meshDist, , export.meshDist, shade3d

Examples

require(rgl)

data(nose)##load data

##warp a mesh onto another landmark configuration:

warpnose.long <- warp.mesh(shortnose.mesh, shortnose.lm, longnose.lm)
Not run:

meshDist (warpnose.long, shortnose.mesh, method="m")

End(Not run)

#use signed distances and

#color distances < 0.01 green:

Not run:

meshDist (warpnose.long, shortnose.mesh, sign=TRUE, tol=0.01, method="m")

End(Not run)

meshPlanelntersect get intersections between mesh and a plane

Description

get intersections between mesh and a plane

Usage

meshPlaneIntersect(mesh, v1, v2, v3)

Arguments
mesh triangular mesh of class "mesh3d"
v numeric vector of length=3 specifying a point on the separating plane
v2 numeric vector of length=3 specifying a point on the separating plane
v3 numeric vector of length=3 specifying a point on the separating plane
Value

returns the intersections of edges and the plane

54 meshres

Examples

data(nose)

vl <- shortnose.1lm[1,]

v2 <- shortnose.1m[2,]

v3 <- shortnose.1m[3,]

intersect <- meshPlanelntersect(shortnose.mesh,v1,v2,v3)
Not run:

require(rgl)

wire3d(shortnose.mesh)
spheres3d(shortnose.1m[1:3,],col=2)#the plane
spheres3d(intersect,col=3,radius = 0.2)#intersections

End(Not run)

meshres calculate average edge length of a triangular mesh

Description

calculate average edge length of a triangular mesh, by iterating over all faces.

Usage

meshres(mesh)

Arguments

mesh triangular mesh stored as object of class "mesh3d"

Value

returns average edge length (a.k.a. mesh resolution)

Author(s)

Stefan Schlager

Examples

data(boneData)
mres <- meshres(skull_0144_ch_fe.mesh)

mirror 55

mirror mirror landmarks or triangular mesh in place

Description

mirror landmarks or triangular mesh in place
Usage
mirror(x, icpiter = 50, subsample = NULL)

S3 method for class 'matrix'
mirror(x, icpiter = 50, subsample = NULL)

S3 method for class 'mesh3d'
mirror(x, icpiter = 50, subsample = NULL)

Arguments
X k x 3 matrix or mesh3d
icpiter integer: number of iterations to match reflected configuration onto original one
subsample integer: use only a subset for icp matching

Details

reflect a mesh configuration at the plane spanned by its first 2 principal axis, then try to rigidily reg-
ister the reflected configuration onto the original one using iterative closest point search to establish
correspondences.

Value

returns the reflected object

Examples

data(boneData)

boneMir <- mirror(bonelLM[,,1],icpiter=50)
2D Example:

require(shapes)

gorfMir <- mirror(gorf.dat[,,1])
plot(gorfMir,asp = 1)
points(gorf.datl[,,1],col=3)

Not run:

now mirror a complete mesh
require(rgl)

skullMir <- mirror(skull_0144_ch_fe.mesh,icpiter=10,subsample = 30)
#i#f#compare result to original
wire3d(skull_0144_ch_fe.mesh,col=3)

56 name2factor

wire3d(skullMir,col=2)

End(Not run)

name2factor extract data from array names

Description

extract data from array names

Usage

non

name2factor(x, sep = "_", which, collapse = sep)

name2num(x, sep = "_", which, collapse = sep, dif = TRUE)
Arguments
X data, can be a three-dimensional array, a matrix, a named list or a vector con-

taining names to split
sep character by which to split the strings

which integer or vector of integers, if more entries are selected, they will be concate-
nated by the string specified with the option ’collapse’.

collapse character by which to collapse data if two strings are to be concatenated
dif logical: calculate difference if two fields containing numbers are selected.
Details

extract data from array names and convert to factors or numbers

If an array is used as input, the data info is expected to be in the 3rd dimension, for a matrix,
rownames are used.

Value

returns a vector containing factors or numbers

Author(s)

Stefan Schlager

NNshapeReg 57

Examples

data <- matrix(rnorm(200),100,2)

id <- paste("”id"”,1:100,sep="")

pop <- c(rep("popl1”,50),rep("pop2",50))

sex <- c(rep("male”,50),rep("female”,50))

age <- floor(rnorm(100,mean=50,sd=10))

rownames (data) <- paste(id,pop,sex,age,sep="_")
infos <- data.frame(pop=name2factor(data,which=2))
infos$age <- name2num(data,which=4)

infos$pop.sex <- name2factor(data,which=2:3)

NNshapeReg Estimate the shape by averaging the shape of the nearest neighbours.

Description

Estimate the shape of one set of landmarks by averaging the shape of the nearest neighbours ob-
tained by a second set of landmarks. Weights are calculated either form Mahalanobis or Procrustes
distances. This can be useful for data with missing landmarks.

Usage

NNshapeReg(x, y = NULL, n = 3, mahalanobis = FALSE,
mc.cores = parallel::detectCores())

Arguments
X an array or matrix (one row per specim) with data used for estimating weights.
y an array or matrix (one row per specim) with landmark data on which the weighted
averaging is applied for prediction. If NULL, x will be used for both tasks.
n amount of nearest neighbours to consider
mahalanobis logical: use mahalanobis distance
mc.cores integer: amount of cores used for parallel processing.
Details

This function calculates weights from one set of shape data and then estimates the shape of another
(or same) set of landmarks. CAUTION: landmark data has to be registered beforehand.

Value

matrix or array of estimates.

See Also

proc.weight, fixLMtps

58 pcAlign

Examples

library(shapes)

proc <- procSym(gorf.dat)

#use the closest 3 specimen based on the first 4 landmarks

#to estimate the shape

estim <- NNshapeReg(proc$rotated[1:4,,],proc$rotated,n=3,mc.cores=1)
#compare estimation and true config

plot(proc$rotated[,,1],asp=1)

points(estim[,,1],col=2)

nose landmarks and a triangular mesh representing a human nose

Description

triangular mesh representing a human nose and two matrices containing landmark data

Format

shortnose.mesh: A triangular mesh of class 'mesh3d’.
shortnose.lm: matrix containing example landmark data placed on shortnose.mesh.

longnose. 1m: matrix containing example landmark data representing a caricaturesquely deformed
human nose.

pcAlign align two pointclouds/meshes by their principal axes

Description

align two pointclouds/meshes by their principal axes

Usage

pcAlign(x, y, optim = TRUE, subsample = NULL)

S3 method for class 'matrix'
pcAlign(x, y, optim = TRUE, subsample = NULL)

S3 method for class 'mesh3d’
pcAlign(x, y, optim = TRUE, subsample = NULL)

pcaplot3d 59

Arguments
X matrix or mesh3d
y matrix or mesh3d
optim logical if TRUE, all possible PC-axis are tested and the rotation with the smallest
RMSE between configs will be used.
subsample integer use subsampled points to decrease computation time
Details

x and y will first be centered and aligned by their PC-axes. If optim=TRUE,all possible 8 ordinations
of PC-axes will be tested and the one with the smallest RMSE between the transformed version of
x and the closest points on y will be used. Then the rotated version of x is translated to the original
center of mass of y.

Value

rotated and translated version of x to the center and principal axes of y.

pcaplot3d visualization of shape variation

Description

visualization of shape change

Usage
pcaplot3d(x, ...)

S3 method for class 'symproc'

pcaplot3d(x, pcshow = c(1, 2, 3), mag = 3, color = 4,
lwd = 1, sym = TRUE, ...)
S3 method for class 'nosymproc'
pcaplot3d(x, pcshow = c(1, 2, 3), mag = 3, color = 4,
lwd =1, ...)
Arguments
X a object derived from the function procSym calculated on 3D coordinates.
pcshow a vector containing the PCscores to be visualized.
mag a vector or an integer containing which standard deviation of which PC has to
be visualized.
color color of the 3d points/spheres.

lwd width of the lines representing the shape change.

60 PCdist

sym logical: if TRUE the symmetric component of shape is displayed. Otherwise the
asymmetric one.

Additional parameters which will be passed to the methods.

Details

visualization of the shape changes explained by Principal components

Value

returns an invisible array containing the shapes associated with the Principal components selected.

See Also

procSym

Examples

Not run:

data(nose)

#make a tiny sample

nosearr <- bindArr(longnose.lm, shortnose.lm, along=3)
proc <- procSym(nosearr)
pcaplot3d(proc,pcshow=1,mag=-3)#only one PC available

End(Not run)

PCdist correlation between a reduced space and the original space

Description

Calculates the correlation between distances in a reduced space and the original space

Usage

PCdist(PCs, PCscores, x = 5, plot.type = "b")

Arguments
PCs m x k matrix of Principal Components where m is the k is the number of PCs.
PCscores n x m matrix of Principal Component scores where n is the number of observa-
tions.
X integer: increment for every x-th PC the subspace to fullspace correlation will

be calculated.

plot. type "b"=barplot of correlation values, "s"=line between correlation values.

permudist 61

Value

a vector of R-squared values between subspace and fullspace distances and a barplot depicting the
correlations belonging to the subspace.

Author(s)

Stefan Schlager

Examples

library(shapes)
a <- procSym(gorf.dat)
PCdist(aPCs, aPCscores, x = 2)

permudist performs permutation testing for group differences.

Description

This function compares the distance between two groupmeans to the distances obtained by random
assignment of observations to this groups.

Usage

permudist(data, groups, rounds = 1000, which = NULL)

Arguments
data array or matrix containing data
groups factors determining grouping.
rounds number of permutations
which integer (optional): in case the factor levels are > 2 this determins which factor-
levels to use
Value
dist distance matrix with distances between actual group means
p.value distance matrix containing pairwise p-values obtained by comparing the actual

distance to randomly acquired distances

62

Examples

data(boneData)

permuvec

proc <- procSym(bonelLM)
groups <- name2factor(bonelLM,which=3)
perm <- permudist(proc$PCscores[,1:10], groups=groups, rounds=10000)

now we concentrate only on sex dimorphism between Europeans
groups <- name2factor(bonelLM,which=3:4)

levels(groups)

perml <- permudist(proc$PCscores, groups=groups,which=3:4, rounds=10000)

permuvec

perfom permutation testing on angles and distances between sub-
groups of two major groups.

Description

perform permutation test on length and angle of the vectors connecting the subgroup means of two
groups: e.g. compare if length and angle between sex related differences in two populations differ

significantly.

Usage

permuvec(data,
tol = l1e-10,

Arguments
data
groups
subgroups
rounds

scale

tol

mc.cores

Details

groups, subgroups = NULL, rounds = 10000, scale = TRUE,
mc.cores = parallel::detectCores())

array or matrix containing data.

factors of firs two grouping variables.
factors of the subgrouping.

number of requested permutation rounds

if TRUE: data will be scaled by pooled within group covarivance matrix. Other-
wise Euclidean distance will be used for calculating distances.

threshold for inverting covariance matrix.

integer: determines how many cores to use for the computation. The default
is autodetect. But in case, it doesn’t work as expected cores can be set manu-
ally.Parallel processing is disabled on Windows due to occasional errors.

This function calculates means of all four subgroups and compares the residual vectors of the major
grouping variables by angle and distance.

permuvec

Value
angle angle between the vectors of the subgroups means
dist distances between subgroups
meanvec matrix containing the means of all four subgroups

permutangles vector containing angles (in radians) from random permutation

permudists vector containing distances from random permutation
p.angle p-value of angle between residual vectors
p.dist p-value of length difference between residual vectors
subdist length of residual vectors connecting the subgroups
means.

Examples
data(boneData)

proc <- procSym(bonelLM)

pop <- name2factor(bonelLM,which=3)

sex <- name2factor(bonelM,which=4)

use non scaled distances by setting \code{scale = FALSE}

and only use first 10 PCs

perm <- permuvec(proc$PCscores[,1:10], groups=pop, subgroups=sex,
scale=FALSE, rounds=100, mc.cores=2)

visualize if the amount of sexual dimorphism differs between

(lenghts of vectors connecting population specific sex's averages)

differs between European and Chines

hist(perm$permudist, xlim=c(0,0.1),main="measured vs. random distances”,
xlab="distances")

points(perm$dist,10,col=2,pch=19)#actual distance

text(perm$dist,15,label=paste(”actual distance\n
(p=",perm$p.dist,")"))

not significant!!

visualize if the direction of sexual dimorphism

(angle between vectors connecting population specific sex's averages)

differs between European and Chines

hist(perm$permutangles, main="measured vs. random angles”,
xlab="angles")

points(perm$angle,10,col=2,pch=19)#actual distance

text(perm$angle, 15,label=paste("”actual distance\n
(p=",perm$p.angle,")"))

also non-significant

64

placePatch

placePatch

Project semi-landmarks from a predefined atlas onto all specimen in a
sample

Description

Project semi-landmarks from a predefined atlas onto all specimen in a sample. Various mechanisms
are implemented to avoid errorneous placement on the wrong surface layer (e.g. inside the bone).

Usage

placePatch(atlas, dat.array, path, prefix = NULL, fileext = ".ply",
ray = TRUE, inflate = NULL, tol = inflate, relax.patch = TRUE,

keep.fix

Arguments

atlas

dat.array

path

prefix

fileext

ray

inflate

tol

relax.patch

keep.fix

rhotol

silent

NULL, rhotol = NULL, silent = FALSE, mc.cores = 1)

object of class "atlas" created by createAtlas

k x 3 x n array containing reference landmarks of the sample or a matrix in case
of only one target specimen.

character: specify the directory where the surface meshes of the sample are
stored.

character: prefix to the specimens names (stored in dimnames(dat.array)[[31])
to match the corresponding file names. If dat.array has no dimnames (e.g. be-
cause it is a matrix - see example below), this can also be a character vector
containing the filenames to which fileext will be appended.

character: file extension of the surface meshes.

logical: projection will be along surface normals instead of simple closest point
search.

inflate (or deflate - if negative sign) the semilandmarks along the normals of the
deformed atlas to make sure that they stay on the outside (inside) of the target
mesh.

numeric: threshold to follow the ray back after inflation. See details below. If
no surface is hit after tol mm, the simple closest point will be used.

logical: request relaxation minimising bending energy toward the atlas.

integer: rowindices of those landmarks that are not allowed to be relaxed in
case relax.patch=TRUE. If not specified, all landmarks will be kept fix. This
is preferably set during atlas creation with createAtlas: In case you specified
corrCurves on the atlas, you should define explicitly which landmarks (also on
the curves) are supposed to fix to prevent them from sliding.

numeric: maximum amount of deviation a hit point’s normal is allowed to de-
viate from the normal defined on the atlas. If relax.patch=TRUE, those points
exceeding this value will be relaxed freely (i.e. not restricted to tangent plane).

logical: suppress messages.

placePatch 65

mc.cores run in parallel (experimental stuff now even available on Windows). On win-
dows this will only lead to a significant speed boost for many configurations,
as all required packages (Morpho and Rvcg) need to be loaded by each newly
spawned process.

Details

This function allows the (relatively) easy projection of surface points defined on an atlas onto all
surface of a given sample by Thin-Plate Spline deformation and additional mechanisms to avoid
distortions. The algorithm can be outlined as followed.

1. relax curves (if specified) against atlas.

2. deform atlas onto targets by TPS based on predefined landmarks (and curves).
3. project coordinates on deformed atlas onto target mesh
4

. ’inflate’ or ’deflate’ configuration along their normals to make sure all coordinates are on the
outside/inside

Project inflated points back onto surface along these normals.
Check if normals are roughly pointing into the same direction as those on the (deformed) atlas.

Relax all points against atlas.

® =N oW

the predefined coordinates will note change afterwards!

Value

array containing the projected coordinates appended to the data.array specified in the input. In case
dat.array is a matrix only a matrix is returned.

Author(s)

Stefan Schlager

References

Schlager S. 2013. Soft-tissue reconstruction of the human nose: population differences and sexual
dimorphism. PhD thesis, Universititsbibliothek Freiburg. URL: http://www. freidok.uni-freiburg.
de/volltexte/9181/.

See Also

createAtlas, relaxLM, checkLM,slider3d, warp.mesh

Examples

Not run:

data(nose)

require(rgl)

###create mesh for longnose

longnose.mesh <- warp.mesh(shortnose.mesh, shortnose.1lm,longnose.1lm)
create atlas

fix <= ¢(1:5,20:21)

http://www.freidok.uni-freiburg.de/volltexte/9181/
http://www.freidok.uni-freiburg.de/volltexte/9181/

66

plotAtlas

atlas <- createAtlas(shortnose.mesh, landmarks =
shortnose.1lm[fix,], patch=shortnose.lm[-c(1:5,20:21),1)
view atlas

plotAtlas(atlas)

create landmark array with only fix landmarks
data <- bindArr(shortnose.lm[fix,], longnose.lm[fix,], along=3)
dimnames(data)[[3]] <- c("shortnose”, "longnose")

write meshes to disk
mesh2ply(shortnose.mesh, filename="shortnose")
mesh2ply(longnose.mesh, filename="longnose")

patched <- placePatch(atlas, data, path="./", inflate=5)
now browse through placed patches
checkLM(patched, path="./", atlas=atlas)

same example with only one target specimen
data <- longnose.lm[fix,]

patched <- placePatch(atlas, data, prefix="longnose"”, path="./", inflate=5)
wire3d(longnose.mesh,col=3)

spheres3d(patched)

End(Not run)

plotAtlas visualize an atlas defined by createAtlas

Description

visualize an atlas defined by createAtlas

Usage
plotAtlas(atlas, pt.size = NULL, alpha = 1, render = c("w", "s"),
point = c("s", "p"), meshcol = "white”, add = TRUE, legend = TRUE,
cols = 2:5)
Arguments
atlas object of class atlas created by createAtlas.
pt.size size of plotted points/spheres. If point="s". pt.size defines the radius of the
spheres. If point="p" it sets the variable size used in point3d.
alpha value between 0 and 1. Sets transparency of mesh 1=opaque 0= fully transpar-
ent.
render if render="w", a wireframe will be drawn, if render="s", the mesh will be

shaded.

plotNormals 67

point how to render landmarks. "s"=spheres, "p"=points.

meshcol color to render the atlas mesh

add logical: if TRUE, a new rgl window is opened.

legend logical: request plot of legend specifying landmark coloring.

cols vector containing colors for each coordinate type cols[1]=landmarks, cols[2]=patch,

cols[3]=corrCurves, cols[4]=patchCurves.

Details

If 1egend=TRUE, a plot with a legend will open where coloring of the 3D-spheres is specified.

Value

returns invisible vector containing rgl. id of rendered objects.

See Also

placePatch, createAtlas

Examples

data(nose)

atlas <- createAtlas(shortnose.mesh, landmarks =
shortnose.1lm[c(1:5,20:21),], patch=shortnose.lm[-c(1:5,20:21),])

Not run:

plotAtlas(atlas)

End(Not run)

plotNormals plots the normals of a triangular surface mesh.

Description
visualises the vertex normals of a triangular surface mesh of class mesh3d. If no normals are
contained, they are computed.

Usage
plotNormals(x, long = 1, lwd = 1, col = 1)

Arguments
X object of class "mesh3d"
long length of the normals (default is 1)
lwd width of the normals

col color of the normals

68 pls2B

Author(s)

Stefan Schlager

Examples

Not run:

require(rgl)

data(nose)
plotNormals(shortnose.mesh,col=4,1long=0.01)
shade3d(shortnose.mesh, col=3)

End(Not run)

pls2B Two-Block partial least square regression.

Description

Performs a Two-Block PLS on two sets of data and assesses the significance of each score by
permutation testing

Usage

pls2B(x, y, tol = 1e-12, same.config = FALSE, rounds = 0,
mc.cores = parallel::detectCores())

Arguments

X array containing superimposed landmark data second block.Matrices are also
allowed but the option ’same.config’ will not work.

y array containing superimposed landmark data of the first block. Matrices are
also allowed but the option ’same.config’ will not work.

tol threshold for discarding singular values.

same.config logical: if TRUE each permutation includes new superimposition of permuted
landmarks. This is necessary if both blocks originate from landmarks that are
superimposed together.

rounds rounds of permutation testing.

mc.cores integer: determines how many cores to use for the computation. The default is

autodetect. But in case, it doesn’t work as expected cores can be set manually.
Parallel processing is disabled on Windows due to occasional errors.

pls2B 69

Details

The Two-Block PLS tries to find those linear combinations in each block maximising the covariance
between blocks. The significance of each linear combination is assessed by comparing the singu-
lar value to those obtained from permuted blocks. If both blocks contain landmarks superimposed
TOGETHER, the option same.config=TRUE requests superimposition of the permuted configura-
tions (i.e. where the the landmarks of block x are replaced by corresponding landmarks of other

specimen.
Value
svd singular value decomposition (see svd) of the ’'common’ covariance block
Xscores PLS-scores of x
Yscores PLS-scores of y
CoVar Dataframe containing singular values, explained covariation, correlation coef-
fictient between PLS-scores and p-values
Author(s)
Stefan Schlager
References

Rohlf FJ, Corti M. 2000. Use of two-block partial least-squares to study covariation in shape.
Systematic Biology 49:740-753.

See Also

svd

Examples

library(shapes)

very arbitrary test:

check if first 4 landmarks covaries with the second 4

proc <- procSym(gorf.dat)

we do only 50 rounds to minimize computation time

Not run: #same.config takes too long for CRAN check

pls1 <- pls2B(proc$rotated[1:4,,],proc$rotated[5:8,,],
same.config=TRUE, rounds=50,mc.cores=2)

End(Not run)
pls1 <- pls2B(proc$rotated[1:4,,],proc$rotated[5:8,,],
same.config=FALSE, rounds=50,mc.cores=1)
plsi$CoVar
layout(matrix(1:4,2,2,byrow=TRUE))
for(i in 1:4)
plot(plsi$Xscores[,i]~plsi$Yscores[,i])

70 predictShape.Im

predictShape.1lm Predict shapes based on linear models calculated from PCscores

Description

Predict shapes based on linear models calculated from PCscores.

Usage

predictShape.1lm(fit, datamod, PC, mshape)

Arguments
fit model of class 1m where the PCscores are fitted onto
datamod a one-sided "model" formula, of the form ~ x1 + x2 + ... + xk, correspond-
ing to the right hand term in the model used in fit. If omitted, the predicted
shapes of all specimen are calculated based on the fitted values.
PC Matrix/vector containing Principal components (rotation matrix) corresponding
to PC-scores used in fit.
mshape matrix of the meanshape’s landmarks by which the data was centered before
rotation in covariance eigenspace.
Details

This function predicts the landmarks based on models calculated from PCscores.

Value
predicted array or matrix containing predicted landmark coordinates
predictedPC matrix containing predicted PC-scores

Warning

Make sure that the levels of the variables used in datamod correspond exactly to those used in fit.
Otherwise model matrix will be calculated erroneous.

See Also

model.matrix, 1m, formula

proc.weight 71

Examples

data(boneData)

proc <- procSym(bonelLM)

pop <- name2factor(bonelLM,which=3)

##easy model with only one factor based on the first four PCs
fit <- Im(proc$PCscores[,1:4] ~ pop)

get shape for Europeans only

datamod <- ~as.factor(levels(pop))[2]

Eu <- predictShape.lm(fit,datamod, proc$PCs[,1:4],proc$mshape)

get shape for Europeans and Chinese

datamod <- ~as.factor(levels(pop))

pred <- predictShape.lm(fit,datamod, proc$PCs[,1:4],proc$mshape)
Not run:

deformGrid3d(pred$predicted[,,1], pred$predicted[,,2], ngrid = @)

End(Not run)
more complicated model

sex <- name2factor(bonelLM,which=4)

fit <- Im(proc$PCscores[,1:4] ~ pop#*sex)

predict female for chinese and European

datamod <- ~(as.factor(levels(pop))*rep(as.factor(levels(sex))[1],2))
pred <- predictShape.lm(fit,datamod, proc$PCs[,1:4],proc$mshape)

predict female and malefor chinese and European

popmod <- factor(c(rep("eu”,2),rep("ch”,2)))

sexmod <- rep(as.factor(levels(sex)),2)

datamod <- ~(popmodxsexmod)

pred <- predictShape.lm(fit,datamod, proc$PCs[,1:4],proc$mshape)

add some (randomly generated) numeric covariate

somevalue <- rnorm(80@,sd=10)

fit <- Im(proc$PCscores[,1:4] ~ pop+somevalue)

probs <- quantile(somevalue, probs=c(0.05, 0.95))

make model for European at 5% and 95% quantile

popmod <- rep(factor(levels(pop))[2],2)

datamod <- ~(popmod+probs)

pred <- predictShape.lm(fit,datamod, proc$PCs[,1:4],proc$mshape)

proc.weight calculate weights inverse to the distances from the specified observa-
tion.

Description

for calculation of a shape model by averaging the observations neighbouring the configuration in
question, it is necessary to calculate weights by similarity.

72

Usage

proc.weight

proc.weight(data, number, ref, report = TRUE, reg = @, log = FALSE,

mahalanobis

Arguments
data
number
ref
report

reg

log

mahalanobis

Details

= FALSE)

array containing landmark configurations

integer: how many of the neighbours are to be involved.
integer: position in the array that is used as reference.
logical: require report about name of the reference.

numeric: regularise mahalanobis distance by adding reg to the diagonal of eigen-
values of the covariance matrix.

logical: use the logarithm of the distances.

logical: use mahalanobis distance.

distances of zero will get a weight of 1el2 (this is scaled to all weights summing to one), thus
weights for observations further away are converging to zero.

Value

data

reference

rho.all

Examples

library(shapes)

dataframe containing id, procrustes/mahalanobis distance and weight according
to the reference

returns observations’ names if available

dataframe containing distances to references of all observations

proc <- procSym(gorf.dat)
#i#tget weights for the the four specimen closest to the first observation.
weights <- proc.weight(proc$rotated,4,1)

##estimate the first specimen by weighted neighbour shapes.
estim <- proc$mshapex*0;

for (i in 1:4)

{estim <-estimt+proc$rotated[, ,weights$data$nr[i]Irweights$data$weight[i]}

visualise

plot(estim,asp=1)## show estimation
points(proc$rotated[,,1],col=3)##show original

procAOVsym 73

procAQVsym Procrustes ANOVA for structures with object symmetry

Description

Procrustes ANOVA for structures with object symmetry, currently only supporting the factors ’spec-
imen’, ’side’ and the interaction term.

Usage

procAOVsym(symproc, indnames = NULL)

Arguments
symproc object returned by procSym, where pairedLM is specified
indnames vector containing specimen identifiers. Only necessary, if data does not contain
dimnames containing identifiers
Details

performs a Procrustes ANOVA for configurations with object symmetry (as described in Klingen-
berg et al. 2002).

Value

returns a dataframe containing Sums of Squares for each factor.

Note

In future releases the implementation of support for bilateral symmetry and more factors is intended.

Author(s)

Stefan Schlager

References
Klingenberg CP, Barluenga M, Meyer A. 2002. Shape analysis of symmetric structures: quantifying
variation among individuals and asymmetry. Evolution 56:1909-20.

See Also

procSym

74

Examples

data(boneData)

left <- c(4,6,8)

ProcGPA

determine corresponding Landmarks on the right side:
important: keep same order

right <- ¢(3,5,7)

pairedlM <- cbind(left,right)
symproc <- procSym(bonelLM, pairedLM=pairedLM)

procAOVsym(symproc)
ProcGPA Workhorse function for procSym, responsible for Procrustes registra-
tion
Description

Workhorse function for procSym, responsible for Procrustes registration

Usage

ProcGPA(dat.array, tol = 1e-05, scale = TRUE, CSinit = FALSE,
silent = FALSE, weights = NULL, centerweight = FALSE,
reflection = TRUE)

Arguments

dat.array

tol
scale
CSinit
silent
weights

centerweight

reflection

Value

returns a list with

rotated

mshape

Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size.

numeric: Threshold for convergence during iterative superimpositioning.
logical: indicating if scaling is requested

logical: if TRUE, all configurations are initially scaled to Unit Centroid Size.
logical: suppress output of elapsed time.

numeric vector: assign per landmark weights.

logical: if TRUE, the landmark configuration is scaled according to weights
during the rotation process, instead of being scaled to the Centroid size.

logical: allow reflections.

k x m x n array of the rotated configurations

sample meanshape

procSym 75

Author(s)

Stefan Schlager

References

Goodall C. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal
Statistical Society. Series B. Statistical Methodology 53:285-239.

Dryden IL, Mardia KV. 1998. Statistical shape analysis. John Wiley and sons, Chichester.

See Also

procSym, rotonto

Examples

data(boneData)

proc <- ProcGPA(bonelLM, CSinit=TRUE, silent=TRUE)

#now we landmarks 5 - 9 double the weight as the others

weights <- c(rep(1,4),rep(2,5),1)

proc.wt <- ProcGPA(boneLM, CSinit=TRUE, weights=weights, silent=TRUE)

procSym Procrustes registration

Description

procSym performs Procrustes superimposition including sliding of semi-landmarks on curves/outlines
in 2D and 3D.

Usage

procSym(dataarray, scale = TRUE, reflect = TRUE, CSinit = TRUE,
orp = TRUE, tol = 1e-05, pairedlLM = NULL, sizeshape = FALSE,
use.lm = NULL, center.part = FALSE, distfun = c("angle"”, "riemann”),
SMvector = NULL, outlines = NULL, deselect = FALSE, recursive = TRUE,
iterations = @, initproc = FALSE)

Arguments
dataarray Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size.
scale logical: indicating if scaling is requested
reflect logical: allow reflections.
CSinit logical: if TRUE, all configurations are initially scaled to Unit Centroid Size.
orp logical: if TRUE, an orthogonal projection at the meanshape into tangent space

is performed.

76

tol
pairedLM

sizeshape

use.lm

center.part

distfun

SMvector

outlines

deselect

recursive

iterations

initproc

Details

procSym

numeric: Threshold for convergence in the sliding process

A X x 2 matrix containing the indices (rownumbers) of the paired LM. E.g. the
left column contains the lefthand landmarks, while the right side contains the
corresponding right hand landmarks.

Logical: if TRUE, a log transformed variable of Centroid Size will be added to
the shapedata as first variable before performing the PCA.

vector of integers to define a subset of landmarks to be used for Procrustes reg-
istration.

Logical: if TRUE, the data superimposed by the subset defined by use.Im will
be centered according to the centroid of the complete configuration. Otherwise
orp will be set to FALSE to avoid erroneous projection into tangent space.

character: "riemann" requests a Riemannian distance for calculating distances
to mean, while "angle" uses an approximation by calculating the angle between
rotated shapes on the unit sphere.

A vector containing the landmarks on the curve(s) that are allowed to slide

A vector (or if threre are several curves) a list of vectors (containing the rowindices)
of the (Semi-)landmarks forming the curve(s) in the successive position on the
curve - including the beginning and end points, that are not allowed to slide.

Logical: if TRUE, the SMvector is interpreted as those landmarks, that are not
allowed to slide.

Logical: if TRUE, during the iterations of the sliding process, the outcome of
the previous iteration will be used. Otherwise the original configuration will be
used in all iterations.

integer: select manually how many iterations will be performed during the slid-
ing process (usefull, when there is very slow convergence). 0 means iteration
until convergence.

Logical: indicating if the first Relaxation step is performed against the mean of
an initial Procrustes superimposition. Symmetric configurations will be relaxed
against a perfectly symmetrical mean.

This function performs Procrustes registration, allowing a variety of options, including scaling, or-
thogonal projection into tangentspace and relaxation of semi-landmarks on curves (without repro-
jection onto the surface/actual outline). It also allows the superimpositioning to be performed using
only a subset of the available landmark. For taking into account object symmetry, pairedLM needs
to be set. This generates an object of class "symproc”. Otherwise an object of class "nosymproc”.

Value

size
rotated

Sym

a vector containing the Centroid Size of the configurations
k x m x n array of the rotated configurations

k x m x n array of the Symmetrical component - only available for the "Symmetry"-
Option (when pairedLM is defined)

procSym

77

Asym k x m x n array of the Asymmetrical component - only available for the "Symmetry"-
Option (when pairedLM is defined)

asymmean k x m matrix of mean asymmetric deviation from symmetric mean

mshape sample meanshape

symmean meanshape of symmetrized configurations

tan if orp=TRUE: Residuals in tangentspace else, Procrustes residuals - only avail-
able without the "Symmetrie"-Option

PCs Principal Components - if sizeshape=TRUE, the first variable of the PCs is size
information (as log transformed Centroid Size)

PCsym Principal Components of the Symmetrical Component

PCasym Principal Components of the Asymmetrical Component

PCscores PC scores

PCscore_sym

PCscore_asym

PC scores of the Symmetrical Component

PC scores of the Asymmetrical Component

eigenvalues eigenvalues of the Covariance matrix

eigensym eigenvalues of the "Symmetrical" Covariance matrix

eigenasym eigenvalues of the "Asymmetrical" Covariance matrix

Variance Table of the explained Variance by the PCs

SymVar Table of the explained "Symmetrical" Variance by the PCs

AsymVar Table of the explained "Asymmetrical" Variance by the PCs

orpdata k x m x n array of the rotated configurations projected into tangent space

rho vector of Riemannian distance from the mean

dataslide array containing slidden Landmarks in the original space - not yet processed by

a Procrustes analysis. Only available if a sliding process was requested

Note

For processing of surface landmarks or including the reprojection of slid landmarks back onto 3D-
surface representations, the usage of slider3d is recommended.

Author(s)

Stefan Schlager

References

Dryden IL, and Mardia KV. 1998. Statistical shape analysis. Chichester.

Klingenberg CP, Barluenga M, and Meyer A. 2002. Shape analysis of symmetric structures: quan-
tifying variation among individuals and asymmetry. Evolution 56(10):1909-1920.

Gunz, P, P. Mitteroecker, and F. L. Bookstein. 2005. Semilandmarks in Three Dimensions, in
Modern Morphometrics in Physical Anthropology. Edited by D. E. Slice, pp. 73-98. New York:
Kluwer Academic/Plenum Publishers.

78

See Also

slider3d

Examples

require(rgl)
data(boneData)

do an analysis of symmetric landmarks
visualize landmarks on surface
Not run:

spheres3d(bonelM[, ,11)
wire3d(skull_0144_ch_fe.mesh,col=3)
get landmark numbers
text3d(bonelLM[, ,1], text=paste(1:10),adj = 1, cex=3)

End(Not run)

determine paired Landmarks left side:

left <- c(4,6,8)

determine corresponding Landmarks on the right side:
important: keep same order

right <- ¢(3,5,7)

pairedlM <- cbind(left,right)

symproc <- procSym(bonelLM, pairedLM=pairedLM)
Not run:

visualize first 3 PCs of symmetric shape
pcaplot3d(symproc, sym=TRUE)

visualize first 3 PCs of asymmetric shape
pcaplot3d(symproc, sym=FALSE)

visualze distribution of symmetric PCscores population
pop <- name2factor(bonelLM, which=3)

require(car)

spm(~symproc$PCscore_sym[,1:5], groups=pop)

visualze distribution of asymmetric PCscores population
spm(~symproc$PCscore_asym[,1:5], groups=pop)

End(Not run)

projRead

projRead Project points onto the closest point on a mesh

Description

project points onto a given surface and return projected points and normals.

Usage

projRead(lm, mesh, readnormals = TRUE, smooth = FALSE, sign = TRUE,

»)

projRead 79

Arguments
1m m x 3 matrix containing 3D coordinates.
mesh character: specify path to mesh file.
readnormals logical: return normals of projected points.
smooth logical: rerturn smoothed normals.
sign logical: request signed distances.
additional arguments currently not used.
Value

if readnormals = FALSE, a m x 3 matrix containing projected points is returned, otherwise a list,
where

vb 3 x m matrix containing projected points
normals 3 X m matrix containing normals

quality vector containing distances

Author(s)

Stefan Schlager

References

Detection of inside/outside uses the algorithm proposed in:

Baerentzen, Jakob Andreas. & Aanaes, H., 2002. Generating Signed Distance Fields From Triangle
Meshes. Informatics and Mathematical Modelling.

See Also

closemeshKD

Examples
data(nose)
Not run:

repro <- projRead(shortnose.lm,shortnose.mesh)

End(Not run)

80 gqqgmat

qgmat Q-0 plot to assess normality of data

Description

gqmat plots Mahalanobisdistances of a given sample against those expected from a Gaussian distri-
bution

Usage

qgmat(x, output = FALSE, square = TRUE)

Arguments

X sample data: matrix or vector

output logical: if TRUE results are returned

square plot in a square window - outliers might be cut off.
Value

if output=TRUE, the following values are returned

X distances from an expected Gaussian distribution
observed distances - sorted

d observed distances - unsorted

Author(s)

Stefan Schlager

See Also

qagplot

Examples

require(MASS)

create normally distributed data

data <- mvrnorm(100,mu=rep(@,5),Sigma = diag(5:1))
qggmat(data)

#i##create non normally distributed data
datal <- rchisq(100,df=3)
qgmat(datal, square=FALSE)

quad2trimesh 81

quad2trimesh converts a mesh containing quadrangular faces into one only consist-
ing of triangles

Description

converts a mesh containing quadrangular faces into one only consisting of triangles

Usage

quad2trimesh(mesh, updateNormals = TRUE)

Arguments

mesh object of class "mesh3d"

updateNormals logical: request recalculation of (angle weighted) vertex normals.

Value

triangular mesh with updated normals

Examples

Sigma <- diag(3:1) #create a 3D-covariance matrix
require(rgl)

quadmesh <- ellipse3d(Sigma)#i#create quadmesh

trimesh <- quad2trimesh(quadmesh)# convert to trimesh

r2morphoj Export data to MorphoJ and Morphologika

Description

Export data to Morphol and Morphologika

Usage

r2morphoj(x, file, id.string = NULL)

r2morphologika(x, file = file, labels = NULL, labelname = NULL, ...)

82 ray2mesh

Arguments
X 3-dimensionla array containing landmark data. E.g. the input/output from procSym.
file character: name the output file
id.string a string with ids or factors to append
labels character vector specify labels to create for Morphologika
labelname character: name the labels for Morphologika.
unused at the moment
Details

Export data to MorphoJ and Morphologika

Examples

library(shapes)
r2morphoj(gorf.dat,file="gorf.dat")

data <- bindArr(gorf.dat, gorm.dat, along=3)
datalabels <- c(rep("female”,dim(gorf.dat)[3]),
rep("male”,dim(gorm.dat)[3]))

labelname <- "sex
r2morphologika(data, labels=datalabels, labelname= labelname, file="data.dat")

"

ray2mesh projects the vertices of a mesh along its normals onto the surface of
another one.

Description

projects the vertices of a mesh onto the surface of another one by searching for the closest point
along vertex normals on the target by for each vertex.

Usage
ray2mesh(mesh1, tarmesh, tol = 1e+12, inbound = FALSE, mindist = FALSE,
.
Arguments
mesh1 mesh to project. Can be an object of class "mesh3d" or path to an external mesh
file (ply, obj, stl).
tarmesh mesh to project onto. Can be an object of class "mesh3d" or path to an external
mesh file (ply, obj, stl).
tol numeric: maximum distance to search along ray, closest Euclidean distance will

be used, if tol is exceeded.

read.csv.folder 83

inbound inverse search direction along rays.
mindist search both ways (ray and -ray) and select closest point.

additional arguments not used at the moment.

Value

returns projected mesh with additional list entries:

quality integer vector containing a value for each vertex of x: 1 indicates that a ray has
intersected “tarmesh’ within the given threshold, while 0 means not
distance numeric vector: distances to intersection
Author(s)
Stefan Schlager
See Also

ply2mesh, closemeshKD

read.csv.folder batch import data from files

Description

imports all data files contained in a specified folder.

Usage

read.csv.folder(folder, x, y = 2:4, rownames = NULL, header = TRUE,

dec = ".", sep = ";", pattern = "csv”, addSpec = NULL, back = TRUE)

Arguments

folder character: path to folder

X either a vector specifiing which rows are to be imported, or character vector

containing variable names to be sought for.

y a vector specifiing, which columns of the speradsheet ist to be imported.

rownames integer: specifies columns, where variable names are stored.

header logical : if spreadsheet contains header-row.

dec character: defines decimal sepearator.

sep character: defines column seperator.

pattern character: specify file format (e.g. csv).

addSpec character: add a custom specifier to the dimnames of the array.

back logical: where to place the specifier.

84 read.Imdta
Value

arr array containing imported data

NAs vector containing position of observations with NAs

NA.list list: containing vectors containing information which LMs are missing in which

observation

Author(s)

Stefan Schlager
See Also

read.table

read.lmdta read dta files

Description

reads .dta files created by the software Landmark http://graphics.idav.ucdavis.edu/research/EvoMorph

Usage

read.lmdta(file = "x", na = 9999)

Arguments
file

na

Value

arr

info

idnames

a dta file

specifies a value that indicates missing values

array containing landmarks dimnames will be Information of ID and landmark
names specified in Landmark

Information extracted from the header of the dta file

character vector containing the names of the individuals as specified in the dta
file

read.mpp 85

read.mpp Read saved pick-points from meshlab

Description

imports pick points selected with meshlab

Usage
read.mpp(file, info = FALSE)

Arguments

file file to import

info logical: if TRUE, addtional infos are returned
Value

if info=FALSE:
a matrix containing picked-points coordinates

if info=TRUE: a list containing

data matrix containing coordinates

info additional info contained in file

Author(s)

Stefan Schlager

See Also

read.pts

read.pts reads pts files

Description

reads Landmark data exported from the software Landmark from http://graphics.idav.ucdavis.edu/research/EvoMorph

Usage
read.pts(file = "x", na = 9999)

86 readallTPS

Arguments

file pts file

na specifies a value that indicates missing values

Value
matrix matrix containing landmark information rownames will be the names given to
the landmarks in Landmark
See Also

read.pts

Examples

data(nose)
write.pts(shortnose.lm, filename="shortnose")
data <- read.pts(”shortnose.pts”)

readallTPS Import landmarks and outlines from TPS files

Description

Imports outlines and landmarks from files generated by tpsdig2

Usage
readallTPS(file)
Arguments
file A TPS-file generated by tpsdig2
Value
1D Specimen IDs read from TPS file
LM list of landmarks contained in the TPS-file
outlines a list containing sublists for each specimen with all the outlines read from TPS
file
Note

currently only landmarks, ID and outlines are read from the TPS-file

Author(s)

Stefan Schlager

readLandmarks.csv 87

References

http://life.bio.sunysb.edu/ee/rohlf/software.html

See Also

read.lmdta, read.pts

readLandmarks.csv import landmark data from csv files

Description

import landmark data from csv files

Usage
readLandmarks.csv(file, x, y = 2:4, rownames = NULL, header = TRUE,
dec = ".", sep = ";"
Arguments
file character: path to file containing landmark data.
X either a vector specifiing which rows are to be imported, or character vector

containing variable names to be sought for.

y a vector specifiing, which columns of the speradsheet ist to be imported.
rownames integer: specifies columns, where variable names are stored.
header logical : if spreadsheet contains header-row.
dec character: defines decimal sepearator.
sep character: defines column seperator.
Value
LM matrix containing imported data
NAs vector containing rows containing NAs
Author(s)
Stefan Schlager
See Also

read.table

88 regdist

regdist correlation between shape space and tangent space

Description

performs a partial Procrustes superimposition of landmark data and calculates the correlation be-
tween tangent and shape space.

Usage

nn

regdist(dataarray, plot = TRUE, main = , rho = "angle",
dist.mat.out = FALSE)

Arguments
dataarray Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size.
plot Logical: whether to plot the distances between observations.
main character string: Title of the plot.
rho chose how to calculate distances in shape space. Options: "riemdist"=Riemannian

distance (function from the shapes package-takes along time to calculate), "an-
gle"=calculates the angle between shape vectors, "sindist"=sinus of length of
residual vector between shape vectors.

dist.mat.out Logical: If TRUE, output will contain distance matrices.

Value
cor correlation coefficient between distances in shape space and tangent space
procSS Procrustes Sums of Squares (of full procrustes distance)
tansSS Tangent Sums of Squares
rhoSs Procrustes Sums of Squares (of angle)
euc.dist distance matrix of euclidean distance in Tangent space
proc.dist distance matrix of Procrustes distance in Shape space
Author(s)
Stefan Schlager
See Also
regdist
Examples
library(shapes)

regdist(gorf.dat)

RegScore 89

RegScore calulate regression scores for linear model

Description

calulate regression scores for linear model as specified in Drake & Klingenberg(2008)

Usage
RegScore(model, x = NULL)

Arguments

model linear model

X optional: matrix containing new data to be projected onto the regression lines.
Details

the data are orthogonally projected onto the regression lines associated with each factor.

Value

returns a n X m matrix containing the regression scores for each specimen.

Warning

when model contains factors with more than 2 levels, R calculates one regression line per 2 factors.
Check the colnames of the returned matrix to select the appropriate one. See examples for details.

References

Drake, AG. & Klingenberg, CP. The pace of morphological change: historical transformation of
skull shape in St Bernard dogs. Proceedings of the Royal Society B: Biological Sciences, The
Royal Society, 2008, 275, 71-76.

Examples

model <- Im(as.matrix(iris[,1:2]1) ~ iris[,3])

rs <- RegScore(model)

plot(rs,iris[,4])

Not run:

data(boneData)

proc <- procSym(bonelLM)

pop.sex <- name2factor(boneLM,which=3:4) # generate a factor with 4 levels
Im.ps.size <- Im(proc$PCscores ~ pop.sex+proc$size)

rs <- RegScore(lm.ps.size)

colnames(rs) # in this case, the last column contains the regression
scores associated with proc$size

End(Not run)

90 relaxLM

relaxLM relax one specific landmark configuration against a reference

Description

relax one specific landmark configuration against a reference (e.g. a sample mean)

Usage

relaxLM(1m, reference, SMvector, outlines = NULL, surp = NULL,
sur.name = NULL, mesh = NULL, tol = 1e-05, deselect = FALSE,
inc.check = TRUE, iterations = @, fixRepro = TRUE)

Arguments

1m k x 3 or k x 2 matrix containing landmark data to be slidden.

reference k x 3 or k x 2 matrix containing landmark of the reference

SMvector A vector containing the landmarks on the curve(s) that are allowed to slide

outlines A vector (or if threre are several curves) a list of vectors (containing the rowindices)
of the (Semi-)landmarks forming the curve(s) in the successive position on the
curve - including the beginning and end points, that are not allowed to slide.

surp A vector containing Semilandmarks positioned on surfaces.

sur.name character: containing the filename of the corresponding surface. When specified,
mesh has to be NULL.

mesh triangular mesh of class "mesh3d" loaded into the R workspace, when speci-
fied, "sur.name" has to be NULL. The function closemeshKD will be used for
reprojection onto the surface.

tol numeric: Threshold for convergence in the sliding proces. Full Procrustes dis-
tance between actual result and previous iteration.

deselect Logical: if TRUE, the SMvector is interpreted as those landmarks, that are not
allowed to slide.

inc.check Logical: if TRUE, the program stops when convergence criterion starts increas-
ing and reports result from last iteration.

iterations integer: maximum amounts the algorithm runs - even when ’tol’ is not reached.
When iterations=0, the algorithm runs until convergence.

fixRepro logical: if TRUE, fix landmarks will also be projected onto the surface. If you
have landmarks not on the surface, select fixRepro=FALSE

Value

returns kx3 matrix of slidden landmarks

Author(s)

Stefan Schlager

relWarps 91

References

Gunz, P, P. Mitteroecker, and F. L. Bookstein. 2005. Semilandmarks in Three Dimensions, in
Modern Morphometrics in Physical Anthropology. Edited by D. E. Slice, pp. 73-98. New York:
Kluwer Academic/Plenum Publishers.

See Also
slider3d

Examples

require(rgl)
data(nose)
relax shornose against longnose

define fix landmarks

fix <= ¢(1:5,20:21)

define surface patch by specifying row indices of matrices
all except those defined as fix

surp <- c(1:dim(shortnose.1m)[1])[-fix]

to reduce this example's computation time,

we only use the right hand semi-landmarks

(which keeps the left hand ones fix)

surp <- surp[1:316]

relax <- relaxLM(shortnose.1lm[1:323, 1],
longnose.1m[1:323,], mesh=shortnose.mesh, iterations=1,
SMvector=fix, deselect=TRUE, surp=surp)

Not run:

visualize differences red=before and green=after sliding
deformGrid3d(shortnose.1m[1:323,], relax, ngrid=0)

add surface

wire3d(shortnose.mesh, col="white")

End(Not run)

relWarps calculate relative Warp analysis

Description
After Procrustes registration the data is scaled by the bending energy or its inverse to emphasize
global/local differences when exploring a sample’s shape.

Usage

relWarps(data, scale = TRUE, CSinit = TRUE, alpha = 1, tol = le-10,
orp = TRUE)

92 relWarps

Arguments
data Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size.
scale Logical: indicating if scaling is requested
CSinit Logical: if TRUE, all configurations are initially scaled to Unit Centroid Size.
alpha integer: power of the bending energy matrix. If alpha = O then standard Pro-
crustes PCA is carried out. If alpha = 1 then large scale differences are empha-
sized, if alpha = -1 then small scale variations are emphasised.
tol tolerance for the eigenvalues of the bending energy matrix to be zero
orp logical: request orthogonal projection into tangent space.
Value
bescores relative warp scores
uniscores uniform scores
Var non-affine variation explained by each relative warp
mshape sample’s conensus shape
rotated Procrustes superimposed data
bePCs vector basis of nonaffine shape variation- relative warps
uniPCs vector basis of affine shape variation - uniform component
Author(s)
Stefan Schlager
References

Bookstein FL 1989. Principal Warps: Thin-plate splines and the decomposition of deformations.
IEEE Transactions on pattern analysis and machine intelligence 11. Bookstein FL, 1991. Morpho-
metric tools for landmark data. Geometry and biology. Cambridge Univ. Press, Cambridge.

Rohlf FJ, Bookstein FL 2003. Computing the Uniform Component of Shape Variation. Systematic
Biology 52:66-69.

Examples

data(boneData)

pop <- name2factor(bonelLM,which=3)

rw <- relWarps(bonelM, alpha = -1)

Not run:

require(car)

plot first 5 relative warps scores grouped by population
spm(rW$bescores[,1:5], group=pop)

plot uniform component scores grouped by population
spm(rW$uniscores[,1:5], group=pop)

##plot non-affine variance associated with each relative warp
barplot(rW$Var[,2], xlab="relative Warps")

steps integer: determines how many intermediate colors the color ramp has.

render.matrixDist 93
2D example:
require(shapes)
data <- bindArr(gorf.dat, gorm.dat, along=3)
sex <- factor(c(rep(”"fem”, dim(gorf.dat)[3]), rep("male”,dim(gorm.dat)[3]1)))
rW <- relWarps(data, alpha = -1)
plot first 3 relative warps scores grouped by population
spm(rW$bescores[,1:3], group=sex)
plot uniform component scores grouped by population
spm(rW$uniscores[,1:2],group=sex)
##plot non-affine variance associated with each relative warp
barplot(rW$Vvar[,2], xlab="relative Warps")
End(Not run)
render.matrixDist plot or save the results of meshDist
Description
plot or save the results of meshDist
Usage
S3 method for class 'matrixDist'
render(x, from = NULL, to = NULL, steps = NULL,
ceiling = NULL, uprange = NULL, tol = NULL, type = c("s", "p"),
radius = NULL, displace = FALSE, sign = NULL, add = FALSE, ...)
render(x, ...)
S3 method for class 'meshDist'
render(x, from = NULL, to = NULL, steps = NULL,
ceiling = NULL, uprange = NULL, tol = NULL, displace = FALSE,
shade = TRUE, sign = NULL, add = FALSE, ...)
export(x, ...)
S3 method for class 'meshDist'
export(x, file = "default”, imagedim = "100x800", ...)
Arguments
X object of class meshDist
from numeric: minimum distance to color; default is set to 0 mm
to numeric: maximum distance to color; default is set to the maximum distance

94 retroDeform3d

ceiling logical: if TRUE, the next larger integer of "to" is used

uprange numeric between 0 and 1: restricts "to" to a quantile of "to", if to is NULL.

tol numeric: threshold to color distances within this threshold green.

type character: "s" shows coordinates as spheres, while "p" shows 3D dots.

radius determines size of spheres; if not specified, optimal radius size will be estimated
by centroid size of the configuration.

displace logical: if TRUE, displacement vectors between original and closest points are
drawn colored according to the distance.

sign logical: request signed distances to be visualised.

add logical: if TRUE, visualization will be added to the rgl window currently in
focus

shade logical: if FALSE, the rendering of the colored surface will be supressed.

file character: filename for mesh and image files produced. E.g. "mydist" will
produce the files mydist.ply and mydist.png

imagedim character of pattern "100x200" where 100 determines the width and 200 the
height of the image.

for render.meshDist: additional arguments passed to shade3d. See rgl.material
for details.
Details

Visualise or save the results of meshDist to disk.

render.meshDist renders the colored mesh and displays the color ramp and returns an object of class
"meshDist". export.meshDist exports the colored mesh as ply file and the color chart as png file.

Author(s)

Stefan Schlager

See Also

meshDist, shade3d

retroDeform3d symmetrize a bilateral landmark configuration

Description

symmetrize a bilateral landmark configuration by removing bending and stretching

Usage
retroDeform3d(mat, pairedLM, hmult = 5, alpha = 0.01)

retroDeformMesh 95

Arguments

mat matrix with bilateral landmarks

pairedLM 2-column integer matrix with the 1st columns containing row indices of left side

landmarks and 2nd column the right hand landmarks

hmult damping factor for calculating local weights

alpha factor controlling spacing along x-axis
Value

deformed matrix containing deformed landmarks

orig matrix containing original landmarks in the same order as the deformed ones
References

Ghosh, D.; Amenta, N. & Kazhdan, M. Closed-form Blending of Local Symmetries. Computer
Graphics Forum, Wiley-Blackwell, 2010, 29, 1681-1688

retroDeformMesh symmetrize a triangular mesh

Description

symmetrize a triangular mesh

Usage
retroDeformMesh(mesh, mat, pairedLM, hmult = 5, alpha = 0.01, rot = TRUE,
lambda = @)
Arguments
mesh triangular mesh of class mesh3d
mat matrix with bilateral landmarks
pairedLM 2-column integer matrix with the 1st columns containing row indices of left side
landmarks and 2nd column the right hand landmarks
hmult damping factor for calculating local weights
alpha factor controlling spacing along x-axis
rot logical: if TRUE the deformed landmarks are rotated back onto the original ones
lambda control parameter passed to tps3d
Details

this function performs retroDeform3d and deforms the mesh accordingly using the function warp.mesh.

96 rotaxis3d

Value
mesh symmetrized mesh
landmarks a list containing the deformed and original bilateral landmarks
rotaxis3d Rotate an object (matrix or mesh) around an arbitrary axis in 3D
Description

Rotate an object around an arbitrary axis in 3D
Usage
rotaxis3d(x, pt1, pt2 = c(@, 0, @), theta)

S3 method for class 'matrix'
rotaxis3d(x, pt1, pt2 = c(@, 0, @), theta)

S3 method for class 'mesh3d'
rotaxis3d(x, ptl, pt2 = c(@, @, @), theta)

Arguments
X k x 3 matrix containing 3D-coordinates or a triangular mesh of class "mesh3d".
pt1 numeric vector of length 3, defining first point on the rotation axis.
pt2 numeric vector of length 3, defining second point on the rotation axis.
theta angle to rotate in radians. With ptl being the viewpoint, the rotation is counter-
clockwise.
Details

Rotate an object (matrix or triangular mesh) around an 3D-axis defined by two points.

Value

returns rotated object (including updated normals for mesh3d objects)

Author(s)

Stefan Schlager

References

http://en.wikipedia.org/wiki/Rotation_matrix

rotaxisMat 97

See Also

rotonto, rotmesh.onto

Examples

require(rgl)

data(nose)

shrot.rot <- rotaxis3d(shortnose.mesh,pti=c(1,1,1),theta=pi)
Not run:

shade3d(shortnose.mesh,col=3, specular=1)
shade3d(shrot.rot,col=2)

###print rotation axis
#' lines3d(rbind(rep(-0.1,3),rep(0.1,3)))

End(Not run)

rotaxisMat calculate a rotation matrix around an arbitrary axis through the origin
in 3D

Description

calculate a rotation matrix around an arbitrary axis in 3D

Usage

rotaxisMat(u, theta, homogeneous = FALSE)

Arguments

u a vector around which to rotate

theta angle in radians to rotate

homogeneous logical: if TRUE a 4x4 rotation matrix is returned
Value

returns 3x3 rotation matrix

References

http://en.wikipedia.org/wiki/Rotation_matrix

See Also

rotaxis3d

98 rotmesh.onto

rotmesh.onto rotate ,scale and translate a mesh based on landmark information.

Description

rotates and reflects a mesh onto by calculating the transformation from two sets of referenced land-
marks.

Usage

rotmesh.onto(mesh, refmat, tarmat, adnormals = FALSE, scale = FALSE,
reflection = FALSE)

Arguments
mesh object of class mesh3d.
refmat k X m matrix with landmarks on the mesh
tarmat k x m matrix as target configuration
adnormals logical - if TRUE, vertex normals will be recomputed after rotation. If mesh has
normals and adnormals=FALSE, the existing normals are rotated by the same
rotation matrix as the mesh’s vertices.
scale logical: if TRUE the mesh will be scaled according to the size of the target.
reflection logical: allow reflection.
Value
mesh rotated mesh
yrot rotated refmat
trafo 4x4 transformation matrix
Author(s)
Stefan Schlager
See Also

file2mesh,warp.mesh ,rotonto,mesh2ply

Examples

require(rgl)

data(boneData)

rotate, translate and scale the mesh belonging to the first specimen

onto the landmark configuration of the 10th specimen

rotmesh <- rotmesh.onto(skull_0144_ch_fe.mesh,bonelM[, 1],
bonelM[,,10], scale=TRUE)

rotonmat 99

Not run:

render rotated mesh and landmarks
shade3d(rotmesh$mesh, col=2, specular=1)
spheres3d(bonelM[,,1])

render original mesh
shade3d(skull_0144_ch_fe.mesh, col=3, specular=1)
spheres3d(bonelLM[,,10])

End(Not run)

rotonmat rotate matrix of landmarks

Description

rotate matrix of landmarks by using a rotation determined by two matrices.

Usage

rotonmat(X, refmat, tarmat, scale = TRUE, reflection = FALSE,
weights = NULL, centerweight = FALSE, getTrafo = FALSE)

Arguments
X Matrix to be rotated
refmat reference matrix used to estimate rotation parameters
tarmat target matrix used to estimate rotation parameters
scale logical: requests scaling to minimize sums of squared distances
reflection logical: if TRUE, reflections are allowed.
weights vector of length k, containing weights for each landmark.

centerweight logical: if weights are defined and centerweigths=TRUE, the matrix will be
centered according to these weights instead of the barycenter.

getTrafo logical: if TRUE, a 4x4 transformation matrix will also be returned.

Details

A matrix is rotated by rotation parameters determined by two different matrices. This is usefull, if
the rotation parameters are to be estimated by a subset of landmark coordinates.

Value
if getTrafo=FALSE the transformed X will be returned, else alist containing:

Xrot the transformed matrix X

trafo a 4x4 transformation matrix

100 rotonto

Author(s)

Stefan Schlager

See Also

rotonto,rotmesh.onto

Examples

data(nose)
shortnose.rot <-
rotonmat (shortnose.1lm,shortnose.1m[1:9,],longnose.1m[1:9,])

##view result
Not run:

deformGrid3d(shortnose.rot, shortnose.1lm,ngrid=0)

End(Not run)

rotonto rotates, translates and scales one matrix onto an other using Pro-
crustes fitting

Description

rotates, translates and scales one matrix onto an other using Procrustes fitting

Usage

rotonto(x, y, scale = FALSE, signref = TRUE, reflection = TRUE,
weights = NULL, centerweight = FALSE)

rotreverse(mat, rot)

S3 method for class 'matrix'
rotreverse(mat, rot)

S3 method for class 'mesh3d'
rotreverse(mat, rot)

Arguments
X k x m matrix to be rotated onto (targetmatrix)
y k x m matrix which will be rotated (reference matrix)
scale logical: scale matrix to minimize sums of squares
signref logical: report if reflections were involved in the rotation

reflection allow reflections.

rotonto

weights
centerweight

mat
rot

Details

101

vector of length k, containing weights for each landmark.

logical: if weights are defined and centerweigths=TRUE, the matrix will be
centered according to these weights instead of the barycenter.

matrix on which the reverse transformations have to be applied

an object resulting from the former application of rotonto

rotate a matrix onto an other without loosing information about the location of the targetmatrix and
reverse this transformations using rotreverse

Value

yrot
Y
X

trans
transy

gamm
bet
reflect

Author(s)

Stefan Schlager

References

rotated and translated matrix
centred and rotated reference matrix
centred target matrix

vector between original position of target and centered reference (during rotation
process)

vector between original position of reference and centered reference (during
rotation process)

rotation matrix
scaling factor applied

if reflect = 1, reflections are involved in the superimposition. Else, reflect =
0

Lissitz, R. W., Schénemann, P. H., & Lingoes, J. C. (1976). A solution to the weighted Procrustes
problem in which the transformation is in agreement with the loss function. Psychometrika, 41,547-

550.

See Also

rotmesh.onto

Examples

library(shapes)

lims <- c(min(gorf.dat[,,1:2]),max(gorf.dat[,,1:21))

rot <- rotonto(gorf.dat[,,1],gorf.dat[,,2]) ### rotate the second onto the first config
plot(rot$yrot,pch=19,xlim=1ims,ylim=1lims) ## view result

points(gorf.dat [,,2],pch=19,col=2) ## view original config

revl <- rotreverse(rot$yrot,rot)

points(revl,cex=2) ### show inversion by larger circles around original configuration

102 scalemesh

scalemesh scale a mesh of class "mesh3d"

Description

scales (the vertices of a mesh by a scalar

Usage
scalemesh(mesh, size, center = c("bbox"”, "mean”, "none"))
Arguments
mesh object of class "mesh3d"
size numeric: scale factor
center character: method to position center of mesh after scaling: values are "bbox",
and "mean". See Details for more info.
Details

The mesh’s center is determined either as mean of the bounding box (center="bbox") or mean of ver-
tex coordinates (center="mean") and then scaled according to the scaling factor. If center="none",
vertex coordinates will simply be multiplied by "size".

Value

returns a scaled mesh

Author(s)

Stefan Schlager

See Also

rotmesh.onto

Examples

data(nose)
#inflate mesh by factor 4
largenose <- scalemesh(shortnose.mesh,4)

showPC 103

showPC convert PCs to landmark configuration

Description

convert PC-scores to landmark coordinates

Usage

showPC(scores, PC, mshape)

Arguments
scores vector of PC-scores
PC Principal components (eigenvectors of the covariance matrix) associated with
’scores’.
mshape matrix containing the meanshape’s landmarks (used to center the data by the
PCA)
Details

Rotates and translates PC-scores derived from shape data back into configuration space.

Value

returns matrix containing landmarks

Author(s)
Stefan Schlager

See Also

prcomp, procSym

Examples

library(shapes)
generate landmarks using
##the first PC-score of the first specimen

proc <- procSym(gorf.dat)
1Im <- showPC(proc$PCscores[1,1],proc$PCs[,1],proc$mshape)
plot(lm,asp=1)

##now the first 3 scores
1m2 <- showPC(proc$PCscores[1,1:3],proc$PCs[,1:3],proc$mshape)
points(1m2,col=2)

104

slider3d

slider3d

slides Semilandmarks along curves and surfaces in 3D by minimising
bending energy of a thin-plate spline deformation.

Description

slides Semilandmarks along curves and surfaces in 3D. The positions on the surface are sought
which minimise bending energy (of a thin-plate spline deformation)

Usage

slider3d(dat.array, SMvector, outlines = NULL, surp = NULL,
sur.path = "sur”, sur.name = NULL, meshlist = NULL, ignore = NULL,
sur.type = "ply”, tol = 1e-05, deselect = FALSE, inc.check = TRUE,

recursive =
pairedLM =
fixRepro

Arguments

dat.array

SMvector

outlines

surp

sur.path

sur.name

meshlist

ignore

sur.type

tol

TRUE, iterations = @, initproc = TRUE, speed = TRUE,
0, weights = NULL, mc.cores = parallel::detectCores(),
TRUE)

Input k x m x n real array, where k is the number of points, m is the number of
dimensions, and n is the sample size. Ideally the dimnames[[3]] vector contains
the names of the surface model (without file extension) - e.g. if the model is
named "surface.ply”, the name of the corresponding matrix of the array would
be "surface"

A vector containing the landmarks on the curve(s) and surfaces that are allowed
to slide

A vector (or if threre are several curves) a list of vectors (containing the rowindices)
of the (Semi-)landmarks forming the curve(s) in the successive position on the
curve - including the beginning and end points, that are not allowed to slide.

A vector containing Semilandmarks positioned on surfaces.
Path to the surface models (e.g. ply, obj, stl files)

character vector: containing the filenames of the corresponding surfaces - e.g.
if the dat.array[,,i] belongs to surface_i.ply, sur.name[i] would be surface_i.ply.
Only necessary if dat.array does not contain surface names.

list containing triangular meshes of class *'mesh3d’, for example imported with
mesh2ply or file2mesh in the same order as the specimen in the array (see
examples below)

vector containing indices of landmarks that are to be ignored. Indices of out-
lines/surfaces etc will be updated automatically.

character:if all surfaces are of the same file format and the names stored in
dat.array, the file format will be specified here.

numeric: Threshold for convergence in the sliding process

slider3d

deselect

inc.check

recursive

iterations

initproc

speed

pairedLM

weights

mc.cores

fixRepro

Value

dataslide

vn.array

Warning

105

Logical: if TRUE, the SMvector is interpreted as those landmarks, that are not
allowed to slide.

Logical: if TRUE, the program stops when convergence criterion starts increas-
ing and reports result from last iteration.

Logical: if TRUE, during the iterations of the sliding process, the outcome of
the previous iteration will be used. Otherwise the original configuration will be
used in all iterations.

integer: select manually the max. number of iterations that will be performed
during the sliding process (usefull, when there is very slow convergence). 0
means iteration until convergence.

requests initial Procrustes fit before sliding.

Logical: if TRUE, only a partial procrustes fit will be performed - this is faster
and can be required, when large samples are processed.

A X x 2 numeric matrix with the indices of the rows containing paired Land-
marks. E.g. the left column contains the lefthand landmarks, while the right
side contains the corresponding right hand landmarks. - This will ideally create
symmetric mean to get rid of assymetry.

vector: assign a weight to each landmark: the smaller the value is, the less it will
be affected by sliding. O = fix. This is highly experimental!!!

integer: determines how many cores to use for the computation. The default is
autodetect. But in case, it doesn’t work as expected cores can be set manually.
In Windows, parallel processing is disabled.

logical: if TRUE, fix landmarks will also be projected onto the surface. If you
have landmarks not on the surface, select fixRepro=FALSE

array containing slidden Landmarks in the original space - not yet processed by
a Procrustes analysis

array containing landmark normals

Depending on the size of the suface meshes and especially the amount of landmarks this can use an
extensive amount of your PC’s resources, especially when running in parallel. As the computation
time and RAM usage of matrix algebra involved is quadratic to the amount of landmarks used, dou-
bling the amount of semi-landmarks will quadruple computation time and system resource usage.
You can easily stall you computer with this function with inappropriate data.

Author(s)

Stefan Schlager

106 slider3d

References

Klingenberg CP, Barluenga M, and Meyer A. 2002. Shape analysis of symmetric structures: quan-
tifying variation among individuals and asymmetry. Evolution 56(10):1909-1920.

Gunz, P, P. Mitteroecker, and F. L. Bookstein. 2005. Semilandmarks in Three Dimensions, in
Modern Morphometrics in Physical Anthropology. Edited by D. E. Slice, pp. 73-98. New York:
Kluwer Academic/Plenum Publishers.

Schlager S. 2012. Sliding semi-landmarks on symmetric structures in three dimensions. American
Journal of Physical Anthropology, 147(552):261. URL: http://dx.doi.org/10.1002/ajpa.21502.

Schlager S. 2013. Soft-tissue reconstruction of the human nose: population differences and sexual
dimorphism. PhD thesis, Universitétsbibliothek Freiburg. URL: http://www. freidok.uni-freiburg.
de/volltexte/9181/.

See Also

relaxLM

Examples

Not run:

data(nose)

#itttcreate mesh for longnose

longnose.mesh <- warp.mesh(shortnose.mesh, shortnose.1lm,longnose.1lm)
write meshes to disk

mesh2ply(shortnose.mesh, filename="shortnose")
mesh2ply(longnose.mesh, filename="longnose")

create landmark array
data <- bindArr(shortnose.lm, longnose.lm, along=3)
dimnames(data)[[3]] <- c("shortnose”, "longnose")

define fix landmarks

fix <- ¢(1:5,20:21)

define surface patch by specifying row indices of matrices
all except those defined as fix

surp <- c(1:nrow(shortnose.1m))[-fix]

slide <- slider3d(data, SMvector=fix, deselect=TRUE, surp=surp,
sur.path="." iterations=1,mc.cores=1)
sur.path="." is the current working directory

now one example with meshes in workspace

to reduce this example's computation time,

we only use the first 50 right hand semi-landmarks

surp <- surp[1:50]

meshlist <- meshlist <- list(shortnose.mesh,longnose.mesh)

slide <- slider3d(datal[1:57,,], SMvector=fix, deselect=TRUE, surp=surp,
sur.path="." iterations=1, meshlist=meshlist,
mc.cores=1,fixRepro=FALSE)

require(rgl)

http://www.freidok.uni-freiburg.de/volltexte/9181/
http://www.freidok.uni-freiburg.de/volltexte/9181/

solutionSpace 107

visualize sliding
deformGrid3d(slide$dataslide[,,1],shortnose.lm,ngrid = @)
these are fix
spheres3d(slide$dataslide[fix,,1],col=4,radius=0.7)

End(Not run)

solutionSpace returns the solution space (basis and translation vector) for an equa-
tion system

Description

returns the solution space (basis and translation vector) for an equation system

Usage

solutionSpace(A, b)

Arguments
A numeric matrix
b numeric vector
Details

For a linear equationsystem, Ax = b, the solution space then is
x=A+ (I —A"A)y

where A* is the Moore-Penrose pseudoinverse of A. The QR decomposition of I — A* A determines
the dimension of and basis of the solution space.

Value
basis matrix containing the basis of the solution space
translate translation vector

Examples

A <- matrix(rnorm(21),3,7)

b <-c(1,2,3)

subspace <- solutionSpace(A,b)

dims <- ncol(subspace$basis) # we now have a 4D solution space

now pick any vector from this space. E.g

y <= 1:dims

solution <- subspace$basis%*%y+subspace$translate # this is one solution for the equation above
A%*%hsolution ## pretty close

108

tps3d

tps3d

thin plate spline mapping

Description

maps a datamatrix via thin plate spline between calculated by a reference on a target configuration

in 2D and 3D

Usage

tps3d(M, refmat, tarmat, lambda = 0)

Arguments
M
refmat

tarmat
lambda

Value

datamatrix - e.g. the matrix information of vertices of a given surface
reference matrix - e.g. landmark configuration on a surface
target matrix - e.g. landmark configuration on a target surface

integer: regularisation parameter of the TPS.

returns the warped datamatrix

Author(s)

Stefan Schlager

References

Bookstein FL. 1989. Principal Warps: Thin-plate splines and the decomposition of deformations.
IEEE Transactions on pattern analysis and machine intelligence 11(6).

See Also

warp.mesh

Examples

require(Morpho)
data(nose)

define some landmarks

refind <- ¢(1:3,4,19:20)

use a subset of shortnose.lm as anchor points for a TPS-deformation
reflm <- shortnose.lm[refind,]

tarlm <- reflm

##replace the landmark at the tip of the nose with that of longnose.lm
tarlm[4,] <- longnose.1lm[4,]
deform a set of semilandmarks by applying a TPS-deformation

typprob 109

based on 5 reference points

deformed <- tps3d(shortnose.lm, reflm, tarlm)

Not run:

##visualize results by applying a deformation grid
deformGrid3d(shortnose.1lm,deformed,ngrid = 5)

End(Not run)

typprob calculate typicality probabilities

Description

calculate typicality probabilities

Usage

typprob(x, data, small = FALSE, method = c("chisquare”, "wilson"),
center = NULL, cova = NULL)

typprobClass(x, data, groups, small = FALSE, method = c("chisquare”,
"wilson"), outlier = .01, sep = FALSE)

Arguments
X vector or matrix of data the probability is to be calculated.
data Reference data set.
small adjustion of Mahalanobis D*2 for small sample sizes as suggested by Wilson
(1981), only takes effect when method="wilson".
method select method for probability estimation. Available options are "chisquare" (or
any abbreviation) or "wilson". "chisquare" exploits simply the chisquare distri-
bution of the mahalanobisdistance, while "wilson" uses the methods suggested
by Wilson(1981). Results will be similar in general.
center vector: specify custom vector to calculate distance to. If not defined, group
mean will be used.
cova covariance matrix to calculate mahalanobis-distance: specify custom covariance
matrix to calculate distance.
groups vector containing grouping information.
outlier probability threshold below which a specimen will not be assigned to any group-
sep logical: if TRUE, probability will be calculated from the pooled within group
covariance matrix.
Details

get the probability for an observation belonging to a given multivariate nromal distribution

110 typprob

Value

typprob: returns a vector of probabilities.

typprobClass:
probs matrix of probabilities for each group
groupaffin vector of groups each specimen has been assigned to. Outliers are classified
llnoneH
Author(s)

Stefan Schlager

References

Albrecht G. 1992. Assessing the affinities of fossils using canonical variates and generalized dis-
tances Human Evolution 7:49-69.

Wilson S. 1981. On comparing fossil specimens with population samples Journal of Human Evo-
lution 10:207 - 214.

Examples

library(shapes)
data <- procSym(gorf.dat)$PCscores[,1:3]
probas <- typprob(data,data,small=TRUE)### get probability for each specimen

now we check how this behaves compared to the mahalanobis distance
maha <- mahalanobis(data,apply(data,2,mean),cov(data))
plot(probas,maha,xlab="Probability"”,ylab="Mahalanobis D*2")

data2 <- procSym(abind(gorf.dat,gorm.dat))$PCscores[,1:3]

fac <- as.factor(c(rep(”"female”,dim(gorf.dat)[3]),rep(”"male”,dim(gorm.dat)[31)))
typClass <- typprobClass(data2,data2,fac,method="w",small=TRUE)

only 59 specimen is rather small.

typClass2 <- typprobClass(data2,data2,fac,method="c")## use default settings

check results for first method:

ct <- table(fac,typClass$groupaffin)

ct #view classification table

get percentage of correct classification
prop.table(ct, 1)

check results for second method:

ctl <- table(fac,typClass2$groupaffin)

ctl #view classification table ### one specimen has been tagged an outlier.
get percentage of correct callification

prop.table(ctl, 1)

unrefVertex 111

unrefVertex some little helpers for vertex operations on triangular meshes

Description

some little helpers for vertex operations on triangular meshes
Usage

unrefVertex(mesh)

rmVertex(mesh, index, keep = FALSE)

vert2points(mesh)

rmUnrefVertex(mesh, silent = FALSE)

Arguments
mesh triangular mesh of class mesh3d.
index vector containing indices of vertices to be removed.
keep logical: if TRUE, the vertices specified by index are kept and the rest is removed.
silent logical: suppress output about info on removed vertices.
Details

extract vertex coordinates from meshes, find and/or remove (unreferenced) vertices from triangular
meshes

unrefVertex finds unreferenced vertices in triangular meshes of class mesh3d.
rmVertex removes specified vertices from triangular meshes.
vert2points extacts vertex coordinates from triangular meshes.

rmUnrefVertex removes unreferenced vertices from triangular meshes.

Value

unrefVertex: vector with indices of unreferenced vertices.
rmVertex: returns mesh with specified vertices removed and faces and normals updated.
vert2points: k x 3 matrix containing vertex coordinates.

rmUnrefVertex: mesh with unreferenced vertices removed.

Author(s)

Stefan Schlager

112 updateNormals

See Also

ply2mesh, file2mesh

Examples

require(rgl)

data(nose)

testmesh <- rmVertex(shortnose.mesh,1:50) ## remove first 50 vertices
Not run:

shade3d(testmesh,col=3)### view result

End(Not run)

testmesh$vb <- cbind(testmesh$vb, shortnose.mesh$vb[,1:50]) ## add some unreferenced vertices
Not run:

points3d(vert2points(testmesh),col=2)## see the vertices in the holes?

End(Not run)

cleanmesh <- rmUnrefVertex(testmesh)## remove those lonely vertices!
Not run:

rgl.popQ)

points3d(vert2points(cleanmesh),col=2) ### now the holes are empty!!

End(Not run)

updateNormals Compute face or vertex normals of a triangular mesh

Description

Compute face or vertex normals of a triangular mesh of class "mesh3d"

Usage
updateNormals(x, angle = TRUE)

facenormals(x)
Arguments

X triangular mesh of class "mesh3d"

angle logical: if TRUE, angle weighted normals are used.
Value

updateNormals returns mesh with updated vertex normals.

facenormals returns an object of class "mesh3d" with

vb faces’ barycenters

normals faces’ normals

vecx 113

Note

only supports triangular meshes

Author(s)

Stefan Schlager

References

Baerentzen, Jakob Andreas. & Aanaes, H., 2002. Generating Signed Distance Fields From Triangle
Meshes. Informatics and Mathematical Modelling, .

See Also
ply2mesh

Examples

require(rgl)

require(Morpho)

data(nose)

calculate vertex normals
shortnose.mesh$normals <- NULL ##remove normals
Not run:

shade3d(shortnose.mesh, col=3)##render

End(Not run)

shortnose.mesh <- updateNormals(shortnose.mesh)

Not run:

rgl.clear()

shade3d(shortnose.mesh,col=3)##smoothly rendered now

End(Not run)

calculate facenormals

facemesh <- facenormals(shortnose.mesh)
Not run:
plotNormals(facemesh,long=0.01)
points3d(vert2points(facemesh),col=2)
wire3d(shortnose.mesh)

End(Not run)

vecx convert an 3D array into a matrix and back

Description

converts a 3D-array (e.g. containing landmark coordinates) into a matrix, one row per specimen or
reverse this.

114 warp.mesh

Usage

vecx(x, byrow = FALSE, revert = FALSE, lmdim)

Arguments
X array or matrix
byrow logical: if TRUE, the resulting vector for each specimen will be x1,y1,21,x2,y2,z2, ...,
and x1,x2,...,y1,y2,...,z1,z2, ... otherwise (default). The same is for re-
verting the process: if the matrix contains the coordinates as rows like: x1,y1,z1,x2,y2,z2, ...
set byrow=TRUE
revert revert the process and convert a matrix with vectorized landmarks back into an
array.
Imdim number of columns for reverting
Value

returns a matrix with one row per specimen

Author(s)

Stefan Schlager

Examples

library(shapes)

data <- vecx(gorf.dat)

#revert the procedure

gdat.restored <- vecx(data,revert=TRUE, lmdim=2)
range(gdat.restored-gorf.dat)

warp.mesh warping a mesh onto another configuration

Description

warps an the surface of a mesh3d object onto another configuration via reference and target land-
mark configuration by using a thin-plate spline interpolation.

Usage

warp.mesh(mesh, matr, matt, lambda = @, updateNormals = TRUE,
silent = FALSE)

warp.mesh 115

Arguments
mesh object of class "mesh3d"
matr matrix of landmarks on the reference surface
matt matrix of corresponding landmarks on the target surface
lambda integer: regularisation parameter of the TPS.

updateNormals Logical: requests the (re)calculation of vertex normals.

silent logical: suppress messages.

Details

the surface is mapped via the tps3d function onto the target shape.

Value

object of class "mesh3d"

Author(s)
Stefan Schlager

See Also

ply2mesh, file2mesh,mesh2ply,warpmovie3d, rotmesh.onto

Examples

require(rgl)

data(nose)##load data

##warp a mesh onto another landmark configuration:

warpnose.long <- warp.mesh(shortnose.mesh,shortnose.1lm,longnose.1lm)
Not run:

shade3d(warpnose. long,col=skin1)

End(Not run)

data(boneData)

deform mesh belonging to the first specimen

onto the landmark configuration of the 10th specimen

Not run:

warpskull <- warp.mesh(skull_0144_ch_fe.mesh,bonelM[,,1],
bonelM[,,10])

render deformed mesh and landmarks

shade3d(warpskull, col=2, specular=1)

spheres3d(bonelM[,,11)

render original mesh

shade3d(skull_0144_ch_fe.mesh, col=3, specular=1)

spheres3d(bonelM[,,101)

End(Not run)

116 warpmovie3d

warpmovie3d Creates a sequence of images showing predefined steps of warping two
meshes or landmark configurations (2D and 3D) into each other

Description

Creates a sequence of images showing predefined steps of warping two meshes or landmark con-
figurations (2D and 3D) into each other

Usage

warpmovie3d(x, y, n, col = "green”, palindrome = FALSE, folder = NULL,
movie = "warpmovie"”, ...)

S3 method for class 'matrix'
warpmovie3d(x, y, n, col = "green", palindrome = FALSE,
folder = NULL, movie = "warpmovie"”, add = FALSE, close = TRUE,
countbegin = @, ask = TRUE, radius = NULL, links = NULL, 1lwd =1,
L)

warpmovie2d(x, y, n, col = "green", palindrome = FALSE, folder = NULL,
movie = "warpmovie”, links = NULL, lwd = 1, imagedim = "800x800",
par = list(xaxt = "n", yaxt = "n", bty = "n"), ...)

S3 method for class 'mesh3d'

warpmovie3d(x, y, n, col = "green", palindrome = FALSE,
folder = NULL, movie = "warpmovie"”, add = FALSE, close = TRUE,
countbegin = @, ask = TRUE, radius = NULL, xland = NULL,

yland = NULL, Imcol = "black”, ...)
Arguments

X mesh to start with (object of class mesh3d)

y resulting mesh (object of class mesh3d), having the same amount of vertices and
faces than the starting mesh

n integer: amount of intermediate steps.

col color of the mesh

palindrome logical: if TRUE, the procedure will go forth and back.

folder character: output folder for created images (optional)

movie character: name of the output files

add logical: if TRUE, the movie will be added to the focussed rgl-windows.

close logical: if TRUE, the rgl window will be closed when finished. width and 200
the height of the image.

countbegin integer: number to start image sequence.

warpmovie3d

ask
radius
links

1wd

imagedim

par
xland
yland

Imcol

Details

117

logical: if TRUE, the viewpoint can be selected manually.
numeric: define size of spheres (overides atuomatic size estimation).

vector or list of vectors containing wireframe information to connect landmarks
(optional).

numeric: controls width of lines defined by "links".

character of pattern "100x200" where 100 determines the width and 200 the
height of the image.

list of graphial parameters: details can be found here: par.
optional argument: add landmarks on mesh x

optional argument: add landmarks on mesh y

optional argument: color of landmarks xland and yland

additional arguments passed to shade3d (3D) or points (2D).

given two landmark configurations or two meshes with the same amount of vertices and faces (e.g a
mesh and its warped counterpart), the starting configuration/mesh will be subsequently transformed
into the final configuration/mesh by splitting the differences into a predefined set of steps.

A series of png files will be saved to disk. These can be joined to animated gifs by external pro-
grams such as imagemagick or used to create animations in PDFs in a latex environment (e.g. latex
package: aninmate).

Author(s)

Stefan Schlager

See Also

ply2mesh, file2mesh,mesh2ply,warp.mesh

Examples

###3D example

data(nose)##load data

Not run:

##warp a mesh onto another landmark configuration:
warpnose.long <- warp.mesh(shortnose.mesh,shortnose.1lm,longnose.1lm)

warpmovie3d(shortnose.mesh,warpnose.long,n=15)## create 15 images.

ad some landmarks
warpmovie3d(shortnose.mesh,warpnose.long,n=15,xland=shortnose.lm,

yland=longnose.lm)## create 15 images.

restrict to landmarks
warpmovie3d(shortnose.1lm,longnose.lm,n=15,movie="matrixmovie")## create 15 images.

118 write.pts

the images are now stored in your current working directory and can
be concatenated to a gif using an external program such as
imagemagick.

End(Not run)

2D example

library(shapes)

bb <- procSym(gorf.dat)

morph superimposed first specimen onto sample mean
warpmovie2d(bb$rotated[,,1],bb$mshape,n=20,1links=c(1,5,4:2,8:6,1),imagedim="600x400")

write.pts exports a matrix containing landmarks into .pts format

Description

exports a matrix containing landmarks into .pts format that can be read by IDAV Landmark.

Usage

write.pts(x, filename = dataname)

Arguments
X k x m matrix containing landmark configuration
filename character: Path/name of the requested output - extension will be added atuomat-
ically. If not specified, the file will be named as the exported object.
Details

you can import the information into the program landmarks available at http://graphics.idav.ucdavis.edu/research/EvoMorph

Author(s)

Stefan Schlager

See Also

read.pts

Examples

data(nose)
write.pts(shortnose.lm, filename="shortnose")

Index

*Topic datasets cutSpace, 26, 26
boneData, 10 CVA, 27,41
colors, 17
nose, 58 deformGrid3d, 31

+Topic package

Morpho-package, 4 export (render.matrixDist), 93

export.meshDist, 53

angle.calc, 5 exVar, 32
anonymize, 5
applyTransform, 6, 39
array, 10

arrMean3, 7
asymPermute, 8

facenormals (updateNormals), 112

file2mesh, 13, 14, 33,47, 48, 98, 104, 112,
115,117

find.outliers, 34

fixLMmirror, 35

barycenter, 9 fixLMtps, 36, 57

bindArr, 9 formula, 70

bonel (colors), 17
bone2 (colors), 17
bone3 (colors), 17
boneData, 10

bonelLM (boneData), 10

getFaces, 38
getTrafo4x4, 38
getTrafoRotaxis, 39
groupPCA, 29, 40

hist, 43

CAC, 11 .
histGroup, 42

cbind, 10
cExtract, 12

checkLM, 13, 65 icpmat, 43

classify, 14 kendalldist, 44
closemeshKD, 9, 15, 46, 79, 83, 90

colors, 17 lineplot, 44
computeTransform, 17 1m, 70

conv2backf, 18 longnose.1lm (nose), 58
cov, 21

covDist, 19 mcNNindex, 45

covPCA (covDist), 19 meanMat, 46

covW, 21 mergeMeshes, 47
createAtlas, 13, 14, 22, 64—67 mesh2grey, 48

Createl, 23 mesh2obj, 49

crossp, 24 mesh2ply, 47,98, 104, 115, 117
cSize, 25 mesh2ply (mesh2obj), 49
cutMeshPlane, 26 meshcube, 50

119

120

meshDist, 94

meshDist (meshDist.matrix), 51
meshDist.matrix, 51
meshPlanelIntersect, 53
meshres, 54

mirror, 55

model.matrix, 70

Morpho (Morpho-package), 4
Morpho-package, 4

name2factor, 56

name2num (name2factor), 56
NNshapeReg, 57

nose, 58

obj2mesh (file2mesh), 33

par, 117

pcAlign, 58
pcaplot3d, 45, 59
PCdist, 60

permudist, 61
permuvec, 62
placePatch, 14, 22, 64, 67
plotAtlas, 14, 22, 66
plotNormals, 67
pls2B, 68

ply2mesh, 16, 47-49,83, 112, 113,115, 117

ply2mesh (file2mesh), 33
points, 42, 117

prcomp, 20, 103
predictShape.1lm, 70
proc.weight, 37,57,71
procAOVsym, 73

ProcGPA, 74
procSym, 8, 60, 73, 75,75, 82, 103
projRead, 78

ggmat, 80
qgplot, 80
quad2trimesh, 49, 81

r2morphoj, 81

r2morphologika (r2morphoj), 81
ray2mesh, 82

rbind, 710

read.csv.folder, 83
read.lmdta, 12, 84, 87
read.mpp, 85

read.pts, 12, 85, 85, 86, 87, 118
read.table, 84, 87
readallTPS, 86
readLandmarks.csv, 87
regdist, 88, 88

RegScore, 89
relaxLM, 23, 65, 90, 106
relWarps, 91

render (render.matrixDist), 93
render.matrixDist, 93
render.meshDist, 53
retroDeform3d, 94, 95
retroDeformMesh, 95
rgl.material, 52, 94

rmUnrefVertex (unrefVertex), 111

rmVertex (unrefVertex), 111
rotaxis3d, 96, 97
rotaxisMat, 97

rotmesh.onto, 97, 98, 100-102, 115

rotonmat, 99
rotonto, 75, 97, 98, 100, 100
rotreverse (rotonto), 100

scalemesh, 102
shade3d, 52, 53,94, 117
shortnose.1lm (nose), 58
shortnose.mesh (nose), 58
showPC, 103

skin1 (colors), 17

skin2 (colors), 17

skin3 (colors), 17

skin4 (colors), 17

INDEX

skull_0144_ch_fe.mesh (boneData), 10

slider3d, 23, 65,77, 78, 91, 104
solutionSpace, 107
svd, 69

tanplan (crossp), 24
tps3d, 23, 31, 37, 95, 108
typprob, 35, 109
typprobClass, 21, 35
typprobClass (typprob), 109

unrefVertex, 111
updateNormals, 78, 112

vecx, 113
vert2points (unrefVertex), 111

warp.mesh, 23, 65, 95, 98, 108, 114, 117

INDEX 121

warpmovie2d (warpmovie3d), 116
warpmovie3d, 115,116
write.pts, 118

	Morpho-package
	angle.calc
	anonymize
	applyTransform
	arrMean3
	asymPermute
	barycenter
	bindArr
	boneData
	CAC
	cExtract
	checkLM
	classify
	closemeshKD
	colors
	computeTransform
	conv2backf
	covDist
	covW
	createAtlas
	CreateL
	crossp
	cSize
	cutMeshPlane
	cutSpace
	CVA
	deformGrid3d
	exVar
	file2mesh
	find.outliers
	fixLMmirror
	fixLMtps
	getFaces
	getTrafo4x4
	getTrafoRotaxis
	groupPCA
	histGroup
	icpmat
	kendalldist
	lineplot
	mcNNindex
	meanMat
	mergeMeshes
	mesh2grey
	mesh2obj
	meshcube
	meshDist.matrix
	meshPlaneIntersect
	meshres
	mirror
	name2factor
	NNshapeReg
	nose
	pcAlign
	pcaplot3d
	PCdist
	permudist
	permuvec
	placePatch
	plotAtlas
	plotNormals
	pls2B
	predictShape.lm
	proc.weight
	procAOVsym
	ProcGPA
	procSym
	projRead
	qqmat
	quad2trimesh
	r2morphoj
	ray2mesh
	read.csv.folder
	read.lmdta
	read.mpp
	read.pts
	readallTPS
	readLandmarks.csv
	regdist
	RegScore
	relaxLM
	relWarps
	render.matrixDist
	retroDeform3d
	retroDeformMesh
	rotaxis3d
	rotaxisMat
	rotmesh.onto
	rotonmat
	rotonto
	scalemesh
	showPC
	slider3d
	solutionSpace
	tps3d
	typprob
	unrefVertex
	updateNormals
	vecx
	warp.mesh
	warpmovie3d
	write.pts
	Index

