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ABSTRACT 
The field of statistical shape analysis involves methods for studying the geometrical properties of random 
objects invariant under translation, scaling and rotation. It is often extremely useful to measure, compare 
and categorize the shape of objects in a wide variety of disciplines, ranging from code recognition to 
medicine, archaeology, and geology.  Shape techniques are most often applied to the area of biology known 
as morphometrics, the statistical study of biological shape and shape changes.  
 
Utilities for data collection in pedagogical situations are widely available.  With test data in hand, Base 
SAS®, SAS/STAT®, SAS/IML®, and SAS/GRAPH® are excellent tools for demonstrating the main ideas of 
shape analysis and performing statistical analysis on the shape data.  An intermediate level of SAS 
programming is assumed; however, mathematically curious beginning level SAS programmers are likely to 
enjoy the material as well. 
 
 
INTRODUCTION 
The familiar adage that a picture is worth a thousand words is a premise taken for granted when working 
with data and analyzing it statistically.  Visual tools typically play a crucial role in deriving meaningful 
information from numerical data and communicating that information clearly and intuitively to others.  Size 
and location, and somewhat less frequently, shape and color are used to communicate summary information 
about numerical data.  Visual summaries in the form of charts and graphs are used to provide needed 
information with clarity and speed, often critical in the context of decision making.   Even when the 
underlying data are as simple as four or five numbers and require very little intermediate interpretation, the 
much maligned pie chart applies an elementary geometric algorithm in order to convey their relative size to 
most audiences far more effectively than a listing of the data. 
 
Suppose, however, that the geometric entities themselves serve as the starting point rather than the result.  
How, for example, can we arrive at legitimate statistical conclusions concerning polygonal samples that 
correspond to physical features of biological organisms? The field of statistical shape analysis involves 
methods for quantifying visual data and deriving information from it.  Synthesizing techniques from statistics, 
geometry and more general mathematics, conclusions are arrived at through analysis and summaries of 
shape data objects. 
 
Automatic object recognition is an obvious application of shape analysis.  Perhaps not as well known to 
those working outside of the fields, traditional biological and medical applications study how shape 

• Changes during growth 
• Changes during evolution 
• Is related to size 
• Is affected by disease 
• Is related to other covariates 

 
Applications of shape analysis are indeed concentrated in the fields of biology, geology and medicine; 
however, the theory and techniques can be applied to appropriate configuration matrices regardless of the 
discipline from which they arise.  Although shape analysis continues to be a developing field, existing 
mathematical underpinnings are rigorous and well developed, and a large body of relevant computational 
methods have been implemented, many of them in SAS®.  The intention of this expository paper is to serve 
as a starting point for SAS® programmers who are interested in learning how to work with shape data or 
who may encounter a need for such analysis in the course of their future work. 
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SIMPLE DATA ACQUISITION OF SIMPLE SHAPE DATA 
For someone just getting started with shape analysis, the morphometrics web site at SUNY Stony Brook 
(http://life.bio.sunysb.edu/morph/ ) is an indispensable resource for programs, test data and utilities in shape 
analysis.  A glossary and comprehensive bibliography are also maintained at the site. 
 
Jean-Pierre Dujardin’s Collection of Coordinates (COO) program is available at the site and allows one to 
retrieve x-y coordinates of landmark data quickly and inexpensively from scanned images.  The novice can 
begin with scanned images of leaves or handwriting samples, then the coordinate data and harmonic 
coefficients can be saved to a text file and the appropriate lines of data can be retrieved with SAS®. 
 
The handwriting sample below provides a sample of twos and threes.  By first establishing guidelines for 
landmark location and then collecting coordinates with a program such as COO, we have sufficient data for 
making use of the principles and algorithms of shape analysis.  One can derive mean shapes for the twos 
and threes, test for shape difference, and determine whether a new shape object is more likely to be a two 
or three. 
 
Such an exercise in obtaining data manually helps to make one aware of some of the pitfalls inherent in 
shape data collection.  For example, the mean shape of a collection of twos will not at all resemble a two if 
an initial crook or loop is included in the outline of some of the shape samples and not included in others.  It 
may be necessary to establish a rule that ignores such a feature. 
 

 
 
A LANDMARK APPROACH 
More formally, statistical shape analysis involves methods for studying the shapes of objects where 
location, rotation and scale information can be removed.  We will begin by focusing on situations where the 
objects under study are summarized by key points called landmarks, and a few preliminary definitions are 
needed. 
 
Shape is all the geometrical information that remains when location, scale and rotational effects are filtered 
out from an object. 
 
A landmark is a point of correspondence on each object that matches between and within populations.  
Each landmark is associated with Cartesian coordinates, that is, either with an ordered pair in the plane or 
with a triple in 3-space. 
 
An anatomical landmark is a point assigned by an expert that corresponds between objects of study in a 
way meaningful in the context of the disciplinary context.   In addition to the Cartesian coordinates, each 
landmark has a name denoting correspondence from shape object to shape object, for example, the point of 
the right elbow. 
 
Mathematical landmarks are points located on an object according to some mathematical or geometrical 
property of the figure. 
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Pseudo-landmarks are constructed points on an object, either around the outline or in between anatomical 
or mathematical landmarks. 
 
The configuration is the set of landmarks on a particular object. 
 
The configuration matrix X is the k x m matrix of Cartesian coordinates of the k landmarks in m 
dimensions. 
 
The configuration space is the space of all possible landmark coordinates. In applications we have k>=3 
landmarks in m = 2 or m = 3 dimensions. 
 
 

Examples of Mathematical Landmarks and Pseudo-landmarks 
 

 
 
Image of a T2 mouse vertebra with six mathematical landmarks as well as 42 
pseudo-landmarks  (Book cover image from Dryden and Mardia)  
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The analysis of landmark data requires the choice of a suitable coordinate system so that the similarity 
transformations of translation, rotation and rescaling are removed.  First a pair of baseline landmarks is 
selected.  The first, landmark 1, will be sent to (-1/2,0), and landmark 2 will be sent to (1/2,0). 
 

 
 
The choice of (-1/2, 0) and (1/2, 0) as the baseline is somewhat arbitrary, and baseline choice varies in the 
literature. Recalling that shape is defined residually as all the geometrical information that remains when 
location, scale and rotational effects are filtered out from an object, one notes that all line segments are 
identical after the appropriate transformations.   A planar example using a simple triangle demonstrates that 
the process of obtaining Bookstein coordinates does indeed change each of the three variants.  The process 
of obtaining Bookstein coordinates is illustrated geometrically in the following sequence of plots.  Exact 
expressions were geometrically derived for the coordinates, and equivalent decimal values are used for 
plotting purposes.    
 
First, location is changed by translation, the object is then rotated appropriately, and finally the triangle is 
scaled so that the resulting triangle is geometrically similar to the original triangle. Each of the 
transformations performed is invertible, that is, for each of the transformations performed, there exists a 
second transformation that is unique, and through composition will “cancel” the effect of the original 
transformation.  Thus, by retaining information on each transformation applied, the original coordinates may 
be recovered precisely and no information is lost.   
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Plot (a) depicts the original triangle, in (b) it is translated, rotated in plot (c) and scaled in plot (d).  Bookstein 
coordinates of (-1/2,0) and (1/2,0) for landmarks 1 and 2 are shown in plot (d), respectively, while the 
Bookstein coordinates for landmark 3 are determined completely by the shape of the original triangle 
regardless of size, orientation or position in the plane. 
 
 

            

            
 
(a) Coordinates: (1, 2), (3, 4), (2, 5)      (b) Coordinates: (-1, -1), (1,1), (0,2)  
Starting with a triangle with vertices (1,2), (3,4)     Translated in the plane so that the baseline  
and (2,5).  Landmarks (1,2) and (3,4) are the                    midpoint is at the origin.                   
end points of the baseline. 
 
 
 

            
 
(c) Coordinates: (-2^(1/2), 0), (2^(1/2), 0),     (d) Coordinates: (-1/4*2^(1/2),0), (1/4*2^(1/2),0), 
      (2^(1/2),2^(1/2))                (1/4*2^(1/2),1/4*2^(1/2)) 
Rotated so that the baseline points lie along                  Scaled to a similitude so that the baseline points 
the x-axis and the third vertex is above the                     are at (-1/2,0) and (1/2,0).                        
x-axis. 
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   Unrelated to calculating the Bookstein coordinates,  
   resizing the view port may render a more readable 
   graphic, as in this particular case. 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
 
SAS® programs for obtaining Bookstein coordinates are widely available.  In Marcus and Corti’s SAS® code 
(Marcus and Corti) for a morphometrics workshop, several SAS/IML® procedures were developed for 
deriving and analyzing the Bookstein coordinates. 
 
Returning to the mean shape concept mentioned in discussion of the handwriting example, a mean shape of 
a collection of 30 sets of Bookstein coordinates is shown.  A plot of the raw data is shown on the right 
(Dryden, 2004). 
  

        
  

            MMeeaann  sshhaappee  ffoorr  3300  oobbsseerrvvaattiioonnss                      JJooiinneedd  lliinneess  ffoorr  3300  oobbsseerrvvaattiioonnss  

 
RROOCCRRUUSSTTEESS  AANNAALLYYSSIISS  

  ccoooorrddiinnaatteess,,  ffuurrtthheerr  mmeetthhooddss  aarree  nneeeeddeedd  iinn  oorrddeerr  ttoo  ppeerrffoorrmm  uusseeffuull  aannaallyyssiiss  

    
  
     

    PP
HHaavviinngg  ddeerriivveedd  ssuuiittaabbllee  sshhaappee
oonn  tthhee  ttrraannssffoorrmmeedd  llaannddmmaarrkk  ddaattaa..    WWiitthh  sshhaappee  ccoooorrddiinnaatteess  iinn  hhaanndd  aa  vvaarriieettyy  ooff  ssttaattiissttiiccaall  tteecchhnniiqquueess  aanndd  
ttoooollss  ccaann  bbee  aapppplliieedd  ttoo  tthhee  sshhaappee  ddaattaa  ttoo  aaccccoommpplliisshh  sseevveerraall  ttaasskkss::    

••     OObbttaaiinniinngg  aa  mmeeaassuurree  ooff  ddiissttaannccee  bbeettwweeeenn  tthhee  sshhaappee  oobbjjeeccttss
•• ccttss    EEssttiimmaattiinngg  mmeeaann  sshhaappeess  ffrroomm  aa  rraannddoomm  ssaammppllee  ooff  sshhaappee  oobbjjee
••

  
  EEssttiimmaattiinngg  sshhaappee  vvaarriiaabbiilliittyy  ffrroomm  aa  rraannddoomm  ssaammppllee  
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CCoonnssttrraaiinnttss  ooff  ssppaaccee  aanndd  ttiimmee  ppeerrmmiitt  oonnllyy  aa  bbrriieeff  sskkeettcchh  ooff  aa  ffeeww  ooff  tthhee  ccoorree  tteecchhnniiqquueess  rreegguullaarrllyy  aapppplliieedd  ttoo  

llaannaarr  PPrrooccrruusstteess  aannaallyyssiiss  iiss  aann  aapppprrooaacchh  tthhaatt  eennttaaiillss  ffiittttiinngg  oobbjjeeccttss  bbyy  ssuuppeerriimmppoossiittiioonn  aanndd  iiss  oofftteenn  aa  

eenneerraalliizzeedd  PPrrooccrruusstteess  AAnnaallyyssiiss  ((GGPPAA))  rreeffeerrss  ttoo  tthhee  ssiittuuaattiioonn  iinn  wwhhiicchh  sseevveerraall  oobbjjeeccttss  aarree  ffiitttteedd  uussiinngg  

rrddiinnaarryy  PPrrooccrruusstteess  AAnnaallyyssiiss  ((OOPPAA))  aapppplliieess  wwhheenn  aa  ssiinnggllee  oobbjjeecctt  iiss  ffiitttteedd  ttoo  aannootthheerr..    OOPPAA  iiss  NNOOTT  
.  

ULL PROCRUSTES DISTANCE 

sshhaappee  ddaattaa..    PPrriinncciippaall  aammoonngg  tthheessee  aarree  mmeetthhooddss  ooff  PPrrooccrruusstteess  aannaallyyssiiss..  
  
PP
ssuuiittaabbllee  pprroocceedduurree  ffoorr  iinnvveessttiiggaattiioonn..    PPrrooccrruusstteess  mmeetthhooddss  hhaavvee  aa  lloonngg  hhiissttoorryy,,  hhaavviinngg  bbeeeenn  eemmppllooyyeedd  aass  
eeaarrllyy  aass  11993399  iinn  ppssyycchhoommeettrriicc  aapppplliiccaattiioonnss  ((MMoossiieerr))..  
 
GG
PPrrooccrruusstteess  ssuuppeerriimmppoossiittiioonn..    
  
OO
ssyymmmmeettrriiccaall  iinn  tthhee  oorrddeerriinngg  ooff  tthhee  oobbjjeeccttss,,  wwhheerreeaass  GGPPAA  iiss  iinnvvaarriiaanntt  uunnddeerr  rree--oorrddeerriinnggss  ooff  tthhee  oobbjjeeccttss.
 
 
F

 
OOrrddiinnaarryy  PPrrooccrruusstteess  aannaallyyssiiss  mmaattcchheess  oonnee  ccoonnffiigguurraattiioonn  ttoo  aannootthheerr  uussiinngg  ttrraannssllaattiioonn,,  rroottaattiioonn  aan   

nnttoo    
ndd

((ppoossssiibbllyy))  ssccaallee..  RReefflleeccttiioonnss  ccaann  aallssoo  bbee  iinncclluuddeedd  iiff  ddeessiirreedd..  TThhee  ffuunnccttiioonn  mmaattcchheess  oonnee  ccoonnffiigguurraattiioonn  oo
aannootthheerr  bbyy  lleeaasstt  ssqquuaarreess..    

 
Adult onto Juvenile:  Rotation angle: -45.52717   Scale:  0.8745017  OSS:  231146.5   
Juvenile onto Adult:  Rotation angle:  45.52717   Scale:  1.130936    OSS:  298926.7  
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Dryden and Mardia geometrically illustrate the difference between notions of partial and full Procrustes fits.  

hile the figures in the third row are difficult to distinguish visually, the figure on the left of the third row 

and 

eometry of Procrustes Fits in Calculating Procrustes Distances   (Dryden and Mardia) 

From left to right in the first row figure X1 is illustrated then centered and finally rescaled on the right.  The 
second row illustrates the same centering and rescaling for figure X2.   
 
W
represents the partial Procrustes distance, a rotation of Z2 to Z1 that minimizes the sum of squared 
distances between pairs of landmarks.  In the middle (right) figure on the third row Z2 is both rotated 
rescaled to minimize the sum of squared distances between pairs of landmarks, representing the full 
Procrustes distance. 
 
G

  
 

MEAN SHAPE, COMPARING SAMPLES, AND SHAPE VARIABILITY 
rences in mean shape between 

rincipal component analysis of the sample covariance matrix in Procrustes tangent space coordinates 
re, 

 

UTLINE ANALYSIS 
s is based on digitizing a large number of points around the boundary of an object. 

 
n 

 

 
  
Either Hotelling's T2 or Goodall's F test can be carried out to examine diffe
two independent populations.   
 
P
provides an effective means of analyzing the main modes of variation in shape. Though not illustrated he
a frequently used method of visualizing the effect of each principal component is to evaluate and plot an icon
for a few values of the standardized PC scores, c, in [-3,3]  where c = 0 corresponds to the full Procrustes 
mean shape. 
 
 
O
Outline or contour analysi
For those situations in which landmarks are difficult to identify or obtain, if the outline can be represented by 
a closed curve or boundary, then outline analysis is the preferred approach to shape analysis.  Many 
shape objects that do not have clearly identifiable landmarks nevertheless can be analyzed successfully
under such conditions.  Considering the planar outlines of certain familiar unicellular organisms such as a
amoeba and a paramecium, the paucity of landmarks is immediately apparent, although the representations
of the organisms can be easily differentiated visually.  
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Literature on Fourier analysis evolved primarily in the fields of mathematics and engineering rather than 
within the classical domains of shape analysis.  Lestrel’s (1997) text begins with an introduction and 
overview of Fourier techniques that is very helpful in bringing the reader up to speed quickly on topics 
needed for boundary and outline work.   
 
The outline analytic approach is exemplified in Rohlf and Archie’s (1984) classical study comparing Fourier 
methods in a study of the shape of mosquito wings.  Digitizing the outlines of wings from 127 species of 
mosquitoes, the authors compared several methods of data description for use in multivariate analysis.  The 
wings were oriented horizontally and a single anatomical landmark was chosen as center.  Coordinates 
were computed for 100 equally spaced radii, and the data set then consisted of angle and radius pairs.    
Calculating the centroid and translating the data accordingly, a matrix of Fourier coefficients for 16 
harmonics (0 through 15) was calculated.  Using this method, the zeroth harmonic describes the contribution 
of a centered circle, the first harmonic is an offset circle, the second is a figure 8, and so on.     
  
Elliptic Fourier Analysis (EFA) is a Fourier method that interpolates the outline to get a large number of 
points but relaxes the constraint of sampling at equal intervals. Traveling counterclockwise around the 
outline from a given starting point, we take note of the x and y increments from point to point, thereby 
defining two periodic functions which are independently subjected to Fourier analysis. 
 
In such situations the shape of outlines are be represented with Fourier series.  The Kuhl and Giardina 
functions are elliptical Fourier functions (EFF) parametrically defining the x and y positions in terms of a third 
variable, t. Here n is the number of the harmonic, and N denotes the maximum harmonic number: 

 
  
 
Rohlf and Archie’s study determined that the EFF formulation produced the best results among several 
formulations studied. 
 
In contrast to the landmark methods, standardization of size, location and rotation are accomplished in 
outline methods through estimations obtained in the course of applying the algorithms.  By calculating the x 
and y coordinates of the centroid of the enclosed region and subtracting these quantities from the input x 
and y coordinates, location is standardized.  Through estimating the area of the ellipse determined by the 
first harmonic and dividing appropriate quantities by its square root, size is approximately standardized. The 
outline is rotated so that the major axis of the ellipse defined by the first harmonic is parallel to the x-axis.   
 
Along with the Fortran program for obtaining EFA coefficients (Ferson, Rohlf and Koehn) the TESTEFA.DTA 
file is provided as a simple example of a data file.  We are currently working on porting the EFA calculation 
component to SAS/IML®.  Meanwhile, reading and plotting the data in SAS® is straightforward.  Here the 
13th data point is added as a repetition of the first in order to close the outline: 
DATA testefa ; 
INPUT PID $ x y ; 
CARDS ; 
1 1 1 
2 1 2 
3 1 3 
4 2 3 
5 3 3 
6 3 4 
7 4 4 
8 5 3 
9 5 2 
10 4 1 
11 3 1 
12 2 1 
13 1 1 
; 
RUN ; 
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TITLE 'TESTEFA.DTA for Elliptical Fourier Analysis - Ferson, Rohlf and 
Koehn' ; 
  
PROC GPLOT DATA = testefa ; 
   PLOT y*x ; 
   RUN ; 
   QUIT ; 
 

 
DATA efa1 ; 
INPUT PID $ x1 y1 ; 
CARDS ; 
   1    1.35403900        1.24387200     
   2    1.01572500        1.87695500     
   3    1.19327700        2.63520900     
   4    1.83912000        3.31545900     
   5    2.78020100        3.73543400     
   6    3.76435800        3.78260100     
   7    4.52788700        3.44432200     
   8    4.86620000        2.81123800     
   9    4.68864900        2.05298500     
  10    4.04280500        1.37273400     
  11    3.10172400        .952759600     
  12    2.11756800        .905592600  
  13   1.35403900        1.24387200  
; 
RUN ; 
 
TITLE Outline Based on a Single Harmonic for TESTEFA.DTA’; 
PROC GPLOT DATA = efa1 ; 
   PLOT y1*x1 ; 
   RUN ; 
   QUIT ; 
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As expected, the first harmonic yields an ellipse above.  Convergence to the outline of the original data is 
becoming very evident when five harmonics are used as shown below. 
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UUssiinngg  aa  llaarrggee  nnuummbbeerr  ooff  ddaattaa  ppooiinnttss  oonn  tthhee  oouuttlliinnee  aanndd  hhiigghheerr  oorrddeerr  hhaarrmmoonniiccss  wwiillll  ooff  ccoouurrssee  lleeaadd  ttoo  ffiinneerr  
ggrraapphhiiccaall  rreepprreesseennttaattiioonnss  aanndd  cclloosseerr  aapppprrooxxiimmaattiioonnss..    TThhee  nneexxtt  ppaaiirr  ooff  ggrraapphhiiccss  aarree  bbaasseedd  oonn  225566  ppooiinnttss  
ffrroomm  tthhee  sskkeettcchh  ooff  tthhee  ffiigguurree..    IInn  eeaacchh  tthhee  ffiirrsstt  hhaarrmmoonniicc  rreepprreesseennttaattiioonn  iiss  aann  oobbvviioouuss  eelllliippssee,,  aanndd  hheerree  tthhee  
rreepprreesseennaattiioonn  uussiinngg  2200  hhaarrmmoonniiccss  ccaann  bbaarreellyy  bbee  ddiissttiinngguuiisshheedd  ffrroomm  tthhee  oorriiggiinnaall  ddaattaa  pplloott..  
  
  
EEFFFF  AApppprrooxxiimmaattiioonnss  ttoo  CCrruuddeellyy  HHaanndd  DDrraawwnn  OOuuttlliinneess  ooff  aa  ““TThhrreeee””  aanndd  aa  ““TTwwoo..””  
OOrriiggiinnaall  ddrraawwiinnggss  aarree  oonn  tthhee  lleefftt  tthheenn  eeaacchh  iiss  ssuummmmaarriizzeedd  uussiinngg  11,,  22  aanndd  33  hhaarrmmoonniiccss..        
  

 
 
 
  
EEFFFF  AApppprrooxxiimmaattiioonnss  ttoo  CCrruuddeellyy  HHaanndd  DDrraawwnn  OOuuttlliinneess  ooff  aa  ““TThhrreeee””  aanndd  aa  ““TTwwoo..””  
The original drawings are on the left then each is summarized using 5, 10, and 20 harmonics 
 

 
 
The EFA approximations above and associated numerical results were derived using the EFAWIN program 
(Isaev and Denisova). 
 
 
CONCLUSIONS  
Statistical shape analysis may be thought of as a cross-disciplinary field lying at the theoretical foundation of 
domains of application such as facial recognition and pattern analysis.  Additionally, shape data presents 
itself in garden-variety situations, and performing certain statistical analyses on fairly small data sets of 
simple shape data is well within the scope of the current desktop 
 
Two key approaches to shape data representation, landmarks and outlines, have been examined.  Rooted 
in 2-dimensional geometry, the landmark approach may be more accessible to most programmers, while 
outline analysis requires familiarity with elements of Fourier analysis.  Although outline analysis does require 
a bit more mathematical background, the payoff is that the techniques may be applied to shape data that is 
ill suited for landmark analysis. While we have barely scratched the surface of statistically analyzing the 
shape data, the methods in Procrustes analysis lead to meaningful information rather easily. 
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A significant portion of shape analysis program development began within SAS® and additional programs 
have been ported to the language.  For example, the SAS® code for obtaining Bookstein coordinates is 
widely available.  It is likely that as interest in outline analysis grew, most researchers chose not to reinvent 
the wheel and turned to Fortran implementations of Fourier techniques that have been solidly in place for 
decades.    
 
Much of the existing shape analysis code for coordinate systems makes use of SAS/IML SAS® which would 
also be the natural habitat for porting code snippets that may not be readily available to those experimenting 
with shape analysis algorithms.    
 
Finally, several significant topical areas of shape analysis have not been addressed here, but are worthy of 
mention: 

• Shape coordinate systems other than Bookstein 
• Allometry, the relationship between shape and size 
• Deformation analysis including relative warps, smoothing splines and tangent space methods 
• Shape data embedded in images 
• High-level Bayesian image analysis 
• Extension of the methods presented to problems in three dimensions 
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